Phase-Field Modeling of Thermal Fracture and Shear Heating in Rocks with Degraded Thermal Conductivity Across Crack

被引:0
|
作者
You, Tao [1 ,2 ,3 ]
Zhu, Qizhi [1 ,3 ]
Li, Weijian [4 ]
Shao, Jianfu [5 ]
机构
[1] Hohai Univ, Key Lab, Minist Educ Geomech & Embankment Engn, Nanjing 210024, Peoples R China
[2] UFZ Helmholtz Ctr Environm Res, Dept Environm Informat, D-04318 Leipzig, Germany
[3] Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210024, Peoples R China
[4] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518060, Peoples R China
[5] Univ Lille, CNRS, Cent Lille, LaMcube,UMR9013, F-59000 Lille, France
基金
中国国家自然科学基金;
关键词
Phase-field; Micromechanics; Heat transfer; Thermal conductivity degradation; Shear heating; GRADIENT DAMAGE MODELS; FLUID-DRIVEN FRACTURE; VARIATIONAL FORMULATION; PART I; BRITTLE; PLASTICITY; FAILURE; MICROMECHANICS; PROPAGATION; SIMULATION;
D O I
10.1007/s10338-023-00452-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By incorporating two different fracture mechanisms and salient unilateral effects in rock materials, we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure. The heat conduction equation is derived, from which the plastic dissipation is treated as a heat source. We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model. Taking advantage of the multiscale analysis, we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture. After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems, we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.
引用
收藏
页码:711 / 726
页数:16
相关论文
共 50 条
  • [31] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [32] Variational phase-field fracture modeling with interfaces
    Yoshioka, Keita
    Mollaali, Mostafa
    Kolditz, Olaf
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 384
  • [33] Phase-Field Modeling of Fracture in Ferroelectric Materials
    Amir Abdollahi
    Irene Arias
    Archives of Computational Methods in Engineering, 2015, 22 : 153 - 181
  • [34] Multiscale Phase-Field Modeling of Fracture in Nanostructures
    Jahanshahi, Mohsen
    Khoei, Amir Reza
    Asadollahzadeh, Niloofar
    Aldakheel, Fadi
    JOURNAL OF MULTISCALE MODELLING, 2023, 14 (04)
  • [35] Phase-field fracture modeling for large structures
    Lo, Yu-Sheng
    Hughes, Thomas J. R.
    Landis, Chad M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2023, 171
  • [36] Phase-Field Modeling of Fracture in Ferroelectric Materials
    Abdollahi, Amir
    Arias, Irene
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (02) : 153 - 181
  • [37] A thermodynamically consistent phase-field model for frictional fracture in rocks
    Liu, Sijia
    Wang, Yunteng
    INTERNATIONAL JOURNAL OF PLASTICITY, 2025, 185
  • [38] Phase-field modeling of crack growth and interaction in rock
    Xu, Bin
    Xu, Tao
    Xue, Yanchao
    Heap, Michael J.
    Ranjith, P. G.
    Wasantha, P. L. P.
    Li, Zhiguo
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2022, 8 (06)
  • [39] Phase-field modeling of crack growth and interaction in rock
    Bin Xu
    Tao Xu
    Yanchao Xue
    Michael J. Heap
    P. G. Ranjith
    P. L. P. Wasantha
    Zhiguo Li
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8
  • [40] Phase-field modeling of crack propagation in multiphase systems
    Schneider, Daniel
    Schoof, Ephraim
    Huang, Yunfei
    Selzer, Michael
    Nestler, Britta
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 186 - 195