A community challenge to predict clinical outcomes after immune checkpoint blockade in non-small cell lung cancer

被引:6
作者
Mason, Mike [1 ]
Lapuente-Santana, Oscar [2 ]
Halkola, Anni S. [3 ]
Wang, Wenyu [4 ]
Mall, Raghvendra [5 ,6 ,7 ]
Xiao, Xu [8 ,9 ]
Kaufman, Jacob [10 ,11 ]
Fu, Jingxin [12 ]
Pfeil, Jacob [13 ]
Banerjee, Jineta [14 ]
Chung, Verena [14 ]
Chang, Han [1 ]
Chasalow, Scott D. [1 ]
Lin, Hung Ying [1 ]
Chai, Rongrong [14 ]
Yu, Thomas [14 ]
Finotello, Francesca [15 ,16 ]
Mirtti, Tuomas [17 ,18 ,19 ,20 ,21 ]
Mayranpaa, Mikko I. [17 ,18 ]
Bao, Jie [4 ]
Verschuren, Emmy W. [22 ]
Ahmed, Eiman I. [23 ]
Ceccarelli, Michele [24 ,25 ]
Miller, Lance D. [26 ,27 ]
Monaco, Gianni [25 ]
Hendrickx, Wouter R. L. [23 ,28 ]
Sherif, Shimaa [23 ,28 ]
Yang, Lin [12 ]
Tang, Ming [12 ]
Gu, Shengqing Stan [12 ]
Zhang, Wubing [12 ]
Zhang, Yi [12 ]
Zeng, Zexian [12 ]
Das Sahu, Avinash [12 ]
Liu, Yang [12 ]
Yang, Wenxian [29 ]
Bedognetti, Davide [23 ,28 ,30 ]
Tang, Jing [4 ,31 ]
Eduati, Federica [2 ,32 ]
Laajala, Teemu D. [3 ,17 ,18 ,19 ,20 ,33 ,34 ,35 ]
Geese, William J. [1 ]
Guinney, Justin [36 ]
Szustakowski, Joseph D. [1 ]
Vincent, Benjamin G. [37 ]
Carbone, David P. [11 ]
机构
[1] Bristol Myers Squibb, Princeton, NJ USA
[2] Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands
[3] Univ Turku, Dept Math & Stat, Turku, Finland
[4] Univ Helsinki, Fac Med, Res Program Syst Oncol, Helsinki, Finland
[5] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, POB 34110, Doha, Qatar
[6] St Jude Childrens Res Hosp, Dept Immunol, Memphis, TN 38105 USA
[7] Technol Innovat Inst, Biotechnol Res Ctr, PO, Box 9639, Abu Dhabi, U Arab Emirates
[8] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[9] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen, Peoples R China
[10] Duke Univ, Dept Med, Durham, NC USA
[11] Ohio State Univ, Comprehens Canc Ctr, Columbus, OH 43210 USA
[12] Dana Farber Canc Inst, Boston, MA USA
[13] AbbVie, South San Francisco, CA USA
[14] Sage Bionetworks, Seattle, WA USA
[15] Univ Innsbruck, Inst Mol Biol, Innsbruck, Austria
[16] Univ Innsbruck, Digital Sci Ctr DiSC, Innsbruck, Austria
[17] Univ Helsinki, Dept Pathol, Helsinki, Finland
[18] Helsinki Univ Hosp, Helsinki, Finland
[19] Univ Helsinki, Res Program Syst Oncol, Helsinki, Finland
[20] iCAN Digital Precis Canc Med Flagship, Helsinki, Finland
[21] Emory Univ, Sch Med, Dept Biomed Engn, Atlanta, GA USA
[22] Univ Helsinki, Inst Mol Med Finland FIMM, HiLIFE, Helsinki, Finland
[23] Human Immunol Dept, Sidra Med, POB 26999, Doha, Qatar
[24] Univ Naples Federico II, Dept Elect Engn & Informat Technol DIETI, I-80125 Naples, Italy
[25] BIOGEM Inst Mol Biol & Genet, Via Camporeale, Ariano Irpino, Italy
[26] Dept Canc Biol, Wake Forest Schoo Med, Winston Salem, NC USA
[27] Atrium Hlth Wake Forest Baptist Comprehens Canc Ct, Winston Salem, NC USA
[28] Hamad Bin Khalifa Univ, Coll Hlth & Life Sci, POB 26999, Doha, Qatar
[29] Aginome Sci, Xiamen, Peoples R China
[30] Univ Genoa, Dept Internal Med & Med Specialties, Genoa, Italy
[31] Univ Helsinki, Fac Med, Dept Biochem & Dev Biol, Helsinki, Finland
[32] Eindhoven Univ Technol, Inst Complex Mol Syst ICMS, Eindhoven, Netherlands
[33] Univ Turku, FICAN West Canc Ctr, Turku, Finland
[34] Turku Univ Hosp, Turku, Finland
[35] Univ Colorado, Dept Pharmacol, Anschutz Med Campus, Denver, CO USA
[36] Tempus Labs, Chicago, IL USA
[37] Univ North Carolina Chapel Hill, Dept Med, Dept Microbiol & Immunol, Computat Med Program,Curriculum Bioinformat & Comp, Chapel Hill, NC USA
关键词
Non-small cell lung cancer; Immune checkpoint inhibitor; Programmed death-1; Programmed death ligand 1; Predictive model; Biomarkers; Crowdsource; GENE-EXPRESSION; NIVOLUMAB; TUMOR; IMMUNOTHERAPY; METAANALYSIS; SENSITIVITY; BIOMARKERS; MODELS;
D O I
10.1186/s12967-023-04705-3
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundPredictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC.MethodsParticipants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials.ResultsA total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1.ConclusionsThis DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy.Trial registration: CheckMate 026; NCT02041533, registered January 22, 2014.CheckMate 227; NCT02477826, registered June 23, 2015.ConclusionsThis DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy.Trial registration: CheckMate 026; NCT02041533, registered January 22, 2014.CheckMate 227; NCT02477826, registered June 23, 2015.ConclusionsThis DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy.Trial registration: CheckMate 026; NCT02041533, registered January 22, 2014.CheckMate 227; NCT02477826, registered June 23, 2015.
引用
收藏
页数:16
相关论文
共 54 条
[1]   rpsftm: An R Package for Rank Preserving Structural Failure Time Models [J].
Allison, Annabel ;
White, Ian R. ;
Bond, Simon .
R JOURNAL, 2017, 9 (02) :342-353
[2]   Cancer immunotherapy: the quest for better biomarkers [J].
不详 .
NATURE MEDICINE, 2022, 28 (12) :2437-2437
[3]   Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: a pooled analysis [J].
Antonia, Scott J. ;
Borghaei, Hossein ;
Ramalingam, Suresh S. ;
Horn, Leora ;
De Castro Carpeno, Javier ;
Pluzanski, Adam ;
Burgio, Marco A. ;
Garassino, Marina ;
Chow, Laura Q. M. ;
Gettinger, Scott ;
Crino, Lucio ;
Planchard, David ;
Butts, Charles ;
Drilon, Alexander ;
Wojcik-Tomaszewska, Joanna ;
Otterson, Gregory A. ;
Agrawal, Shruti ;
Li, Ang ;
Penrod, John R. ;
Brahmer, Julie .
LANCET ONCOLOGY, 2019, 20 (10) :1395-1408
[4]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[5]   QUANTITATIVE ANALYSES OF NORMAL TISSUE EFFECTS IN THE CLINIC (QUANTEC): AN INTRODUCTION TO THE SCIENTIFIC ISSUES [J].
Bentzen, Soren M. ;
Constine, Louis S. ;
Deasy, Joseph O. ;
Eisbruch, Avi ;
Jackson, Andrew ;
Marks, Lawrence B. ;
Ten Haken, Randall K. ;
Yorke, Ellen D. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 76 (03) :S3-S9
[6]   The "cancer immunogram" [J].
Blank, Christian U. ;
Haanen, John B. ;
Ribas, Antoni ;
Schumacher, Ton N. .
SCIENCE, 2016, 352 (6286) :658-660
[7]  
Borghaei H, 2021, J CLIN ONCOL, V39, P723, DOI 10.1200/JCO.20.01605
[8]   First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer [J].
Carbone, D. P. ;
Reck, M. ;
Paz-Ares, L. ;
Creelan, B. ;
Horn, L. ;
Steins, M. ;
Felip, E. ;
van den Heuvel, M. M. ;
Ciuleanu, T. -E. ;
Badin, F. ;
Ready, N. ;
Hiltermann, T. J. N. ;
Nair, S. ;
Juergens, R. ;
Peters, S. ;
Minenza, E. ;
Wrangle, J. M. ;
Rodriguez-Abreu, D. ;
Borghaei, H. ;
Blumenschein, G. R. ;
Villaruz, L. C. ;
Havel, L. ;
Krejci, J. ;
Corral Jaime, J. ;
Chang, H. ;
Geese, W. J. ;
Bhagavatheeswaran, P. ;
Chen, A. C. ;
Socinski, M. A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (25) :2415-2426
[9]   PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer [J].
Cercek, Andrea ;
Lumish, Melissa ;
Sinopoli, Jenna ;
Weiss, Jill ;
Shia, Jinru ;
Lamendola-Essel, Michelle ;
El Dika, Imane H. ;
Segal, Neil ;
Shcherba, Marina ;
Sugarman, Ryan ;
Stadler, Zsofia ;
Yaeger, Rona ;
Smith, J. Joshua ;
Rousseau, Benoit ;
Argiles, Guillem ;
Patel, Miteshkumar ;
Desai, Avni ;
Saltz, Leonard B. ;
Widmar, Maria ;
Iyer, Krishna ;
Zhang, Janie ;
Gianino, Nicole ;
Crane, Christopher ;
Romesser, Paul B. ;
Pappou, Emmanouil P. ;
Paty, Philip ;
Garcia-Aguilar, Julio ;
Gonen, Mithat ;
Gollub, Marc ;
Weiser, Martin R. ;
Schalper, Kurt A. ;
Diaz, Luis A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (25) :2363-2376
[10]   Non-small-cell lung cancers: a heterogeneous set of diseases [J].
Chen, Zhao ;
Fillmore, Christine M. ;
Hammerman, Peter S. ;
Kim, Carla F. ;
Wong, Kwok-Kin .
NATURE REVIEWS CANCER, 2014, 14 (08) :535-546