Continual Model-Based Reinforcement Learning for Data Efficient Wireless Network Optimisation

被引:0
作者
Hasan, Cengis [1 ]
Agapitos, Alexandros [1 ]
Lynch, David [1 ]
Castagna, Alberto [1 ]
Cruciata, Giorgio [1 ]
Wang, Hao [1 ]
Milenovic, Aleksandar [1 ]
机构
[1] Huawei Ireland Res Ctr, Dublin, Ireland
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI | 2023年 / 14174卷
关键词
LATENT;
D O I
10.1007/978-3-031-43427-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method that addresses the pain point of long lead-time required to deploy cell-level parameter optimisation policies to new wireless network sites. Given a sequence of action spaces represented by overlapping subsets of cell-level configuration parameters provided by domain experts, we formulate throughput optimisation as Continual Reinforcement Learning of control policies. Simulation results suggest that the proposed system is able to shorten the end-to-end deployment lead-time by two-fold compared to a reinitialise-and-retrain baseline without any drop in optimisation gain.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 33 条
[11]  
Devin Coline, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P2169, DOI 10.1109/ICRA.2017.7989250
[12]  
Eckhardt H., 2011, IEEE 73 VEH TECHN C, P1
[13]  
Eisenblatter A., 2008, P IEEE 19 INT S PERS, P1, DOI DOI 10.1109/PIMRC.2008.4699919
[14]  
Isele D, 2018, AAAI CONF ARTIF INTE, P3302
[15]  
Khetarpal K, 2022, J ARTIF INTELL RES, V75, P1401
[16]   Overcoming catastrophic forgetting in neural networks [J].
Kirkpatricka, James ;
Pascanu, Razvan ;
Rabinowitz, Neil ;
Veness, Joel ;
Desjardins, Guillaume ;
Rusu, Andrei A. ;
Milan, Kieran ;
Quan, John ;
Ramalho, Tiago ;
Grabska-Barwinska, Agnieszka ;
Hassabis, Demis ;
Clopath, Claudia ;
Kumaran, Dharshan ;
Hadsell, Raia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) :3521-3526
[17]   Learning without Forgetting [J].
Li, Zhizhong ;
Hoiem, Derek .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (12) :2935-2947
[18]  
Mendez JA, 2022, Arxiv, DOI arXiv:2207.00429
[19]   Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks [J].
Nasir, Yasar Sinan ;
Guo, Dongning .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (10) :2239-2250
[20]  
Ogarrio Juan Miguel, 2016, JMLR Workshop Conf Proc, V52, P368