Continual Model-Based Reinforcement Learning for Data Efficient Wireless Network Optimisation

被引:0
作者
Hasan, Cengis [1 ]
Agapitos, Alexandros [1 ]
Lynch, David [1 ]
Castagna, Alberto [1 ]
Cruciata, Giorgio [1 ]
Wang, Hao [1 ]
Milenovic, Aleksandar [1 ]
机构
[1] Huawei Ireland Res Ctr, Dublin, Ireland
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI | 2023年 / 14174卷
关键词
LATENT;
D O I
10.1007/978-3-031-43427-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method that addresses the pain point of long lead-time required to deploy cell-level parameter optimisation policies to new wireless network sites. Given a sequence of action spaces represented by overlapping subsets of cell-level configuration parameters provided by domain experts, we formulate throughput optimisation as Continual Reinforcement Learning of control policies. Simulation results suggest that the proposed system is able to shorten the end-to-end deployment lead-time by two-fold compared to a reinitialise-and-retrain baseline without any drop in optimisation gain.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 33 条
  • [1] Rusu AA, 2016, Arxiv, DOI arXiv:1511.06295
  • [2] Rusu AA, 2016, Arxiv, DOI arXiv:1606.04671
  • [3] Online Antenna Tuning in Heterogeneous Cellular Networks With Deep Reinforcement Learning
    Balevi, Eren
    Andrews, Jeffrey G.
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2019, 5 (04) : 1113 - 1124
  • [4] Out-of-Sample Tuning for Causal Discovery
    Biza, Konstantina
    Tsamardinos, Ioannis
    Triantafillou, Sofia
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4963 - 4973
  • [5] Neuromorphic AI Empowered Root Cause Analysis of Faults in Emerging Networks
    Bothe, Shruti
    Masood, Usama
    Farooq, Hasan
    Imran, Ali
    [J]. 2020 IEEE INTERNATIONAL BLACK SEA CONFERENCE ON COMMUNICATIONS AND NETWORKING (BLACKSEACOM), 2020,
  • [6] Bouton M., 2021, Coordinated reinforcement learning for optimizing mobile networks
  • [7] Learning Radio Resource Management in RANs: Framework, Opportunities, and Challenges
    Calabrese, Francesco Davide
    Wang, Li
    Ghadimi, Euhanna
    Peters, Gunnar
    Hanzo, Lajos
    Soldati, Pablo
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (09) : 138 - 145
  • [8] Chua K, 2018, ADV NEUR IN, V31
  • [9] LEARNING HIGH-DIMENSIONAL DIRECTED ACYCLIC GRAPHS WITH LATENT AND SELECTION VARIABLES
    Colombo, Diego
    Maathuis, Marloes H.
    Kalisch, Markus
    Richardson, Thomas S.
    [J]. ANNALS OF STATISTICS, 2012, 40 (01) : 294 - 321
  • [10] Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage and Capacity in Mobile Networks
    Dandanov, Nikolay
    Al-Shatri, Hussein
    Klein, Anja
    Poulkov, Vladimir
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2017, 92 (01) : 251 - 278