Quantum-probabilistic Hamiltonian learning for generative modeling and anomaly detection

被引:11
作者
Araz, Jack Y. [1 ]
Spannowsky, Michael [1 ]
机构
[1] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England
关键词
ALGORITHM;
D O I
10.1103/PhysRevA.108.062422
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Hamiltonian of an isolated quantum -mechanical system determines its dynamics and physical behavior. This study investigates the possibility of learning and utilizing a system's Hamiltonian and its variational thermal state estimation for data analysis techniques. For this purpose, we employ the method of quantum Hamiltonian -based models for the generative modeling of simulated Large Hadron Collider data and demonstrate the representability of such data as a mixed state. In a further step, we use the learned Hamiltonian for anomaly detection, showing that different sample types can form distinct dynamical behaviors once treated as a quantum many -body system. We exploit these characteristics to quantify the difference between sample types. Our findings show that the methodologies designed for field theory computations can be utilized in machine learning applications to employ theoretical approaches in data analysis techniques.
引用
收藏
页数:13
相关论文
共 56 条
[31]   Fast Estimation of Sparse Quantum Noise [J].
Harper, Robin ;
Yu, Wenjun ;
Flammia, Steven T. .
PRX QUANTUM, 2021, 2 (01)
[32]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[33]   Training products of experts by minimizing contrastive divergence [J].
Hinton, GE .
NEURAL COMPUTATION, 2002, 14 (08) :1771-1800
[34]   A fast learning algorithm for deep belief nets [J].
Hinton, Geoffrey E. ;
Osindero, Simon ;
Teh, Yee-Whye .
NEURAL COMPUTATION, 2006, 18 (07) :1527-1554
[35]  
Huber A, 1968, Mathematical Methods in Solid State and Superfluid Theory, P364, DOI DOI 10.1007/978-1-4899-6435-9_14
[36]   Towards quantum machine learning with tensor networks [J].
Huggins, William ;
Patil, Piyush ;
Mitchell, Bradley ;
Whaley, K. Birgitta ;
Stoudenmire, E. Miles .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02)
[37]  
Kasieczka G., 2019, ABOUT US
[38]   The Machine Learning landscape of top taggers [J].
Kasieczka, Gregor ;
Plehn, Tilman ;
Butter, Anja ;
Cranmer, Kyle ;
Debnath, Dipsikha ;
Dillon, Barry M. ;
Fairbairn, Malcolm ;
Faroughy, Darius A. ;
Fedorko, Wojtek ;
Gay, Christophe ;
Gouskos, Loukas ;
Kamenik, Jernej E. ;
Komiske, Patrick T. ;
Leiss, Simon ;
Lister, Alison ;
Macaluso, Sebastian ;
Metodiev, Eric M. ;
Moore, Liam ;
Nachman, Ben ;
Nordstrom, Karl ;
Pearkes, Jannicke ;
Qu, Huilin ;
Rath, Yannik ;
Rieger, Marcel ;
Shih, David ;
Thompson, Jennifer M. ;
Varma, Sreedevi .
SCIPOST PHYSICS, 2019, 7 (01)
[39]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[40]   The theory of variational hybrid quantum-classical algorithms [J].
McClean, Jarrod R. ;
Romero, Jonathan ;
Babbush, Ryan ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18