Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 Mpro inhibitors

被引:21
作者
Song, Letian [1 ]
Gao, Shenghua [1 ,2 ]
Ye, Bing [1 ]
Yang, Mianling [1 ]
Cheng, Yusen [1 ]
Kang, Dongwei [1 ]
Yi, Fan [3 ]
Sun, Jin-Peng [4 ]
Menendez-Arias, Luis [5 ,6 ]
Neyts, Johan [7 ]
Liu, Xinyong [1 ]
Zhan, Peng [1 ]
机构
[1] Shandong Univ, Cheeloo Coll Med, Sch Pharmaceut Sci, Key Lab Chem Biol,Minist Educ,Dept Med Chem, Jinan 250012, Peoples R China
[2] Shandong Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[3] Shandong Univ, Sch Basic Med Sci, Dept Pharmacol, Key Lab Infect & Immun Shandong Prov, Jinan 250012, Peoples R China
[4] Shandong Univ, Dept Biochem & Mol Biol, Sch Basic Med Sci, Minist Educ,Cheeloo Coll Med,Key Lab Expt Teratol, Jinan 250012, Peoples R China
[5] CSIC, Ctr Biol Mol Severo Ochoa, Madrid 28049, Spain
[6] Autonomous Univ Madrid, Madrid 28049, Spain
[7] Katholieke Univ Leuven, Rega Inst Med Res, Dept Microbiol & Immunol, Lab Virol & Chemotherapy, B-3000 Leuven, Belgium
基金
中国博士后科学基金;
关键词
COVID-19; SARS-CoV-2; Main protease; Non-covalent inhibitors; Medicinal chemistry; strategies; MAIN PROTEASE; DISCOVERY; IDENTIFICATION; REPLICATION; SITE; SARS;
D O I
10.1016/j.apsb.2023.08.004
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non -covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non -covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non -covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non -covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non -covalent Mpro inhibitors are also discussed. (c) 2024 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under the CC BY -NCND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:87 / 109
页数:23
相关论文
共 147 条
[1]   Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening [J].
Abian, Olga ;
Ortega-Alarcon, David ;
Jimenez-Alesanco, Ana ;
Ceballos-Laita, Laura ;
Vega, Sonia ;
Reyburn, Hugh T. ;
Rizzuti, Bruno ;
Velazquez-Campoy, Adrian .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 164 :1693-1703
[2]   A road map for prioritizing warheads for cysteine targeting covalent inhibitors [J].
Abranyi-Balogh, Peter ;
Petri, Laszlo ;
Imre, Timea ;
Szijj, Peter ;
Scarpino, Andrea ;
Hrast, Martina ;
Mitrovic, Ana ;
Fonovic, Ursa Petar ;
Nemeth, Krisztina ;
Barreteau, Helene ;
Roper, David I. ;
Horvati, Kata ;
Ferenczy, Gyorgy G. ;
Kos, Janko ;
Ilas, Janez ;
Gobec, Stanislav ;
Keseru, Gyorgy M. .
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2018, 160 :94-107
[3]   Advances in the Development of SARS-CoV-2 Mpro Inhibitors [J].
Agost-Beltran, Laura ;
de la Hoz-Rodriguez, Sergio ;
Bou-Iserte, Lledo ;
Rodriguez, Santiago ;
Fernandez-de-la-Pradilla, Adrian ;
Gonzalez, Florenci V. .
MOLECULES, 2022, 27 (08)
[4]   Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents [J].
Alzyoud, Lara ;
Ghattas, Mohammad A. ;
Atatreh, Noor .
DRUG DESIGN DEVELOPMENT AND THERAPY, 2022, 16 :2463-2478
[5]   Structural insights into SARS-CoV-2 proteins [J].
Arya, Rimanshee ;
Kumari, Shweta ;
Pandey, Bharati ;
Mistry, Hiral ;
Bihani, Subhash C. ;
Das, Amit ;
Prashar, Vishal ;
Gupta, Gagan D. ;
Panicker, Lata ;
Kumar, Mukesh .
JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (02)
[6]   Chemical con artists foil drug discovery [J].
Baell, Jonathan ;
Walters, Michael A. .
NATURE, 2014, 513 (7519) :481-483
[7]   Structural similarities between SARS-CoV2 3CLpro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals [J].
Bafna, Khushboo ;
Cioffi, Christopher L. L. ;
Krug, Robert M. M. ;
Montelione, Gaetano T. T. .
FRONTIERS IN CHEMISTRY, 2022, 10
[8]   Exploring protein hotspots by optimized fragment pharmacophores [J].
Bajusz, David ;
Wade, Warren S. ;
Satala, Grzegorz ;
Bojarski, Andrzej J. ;
Ilas, Janez ;
Ebner, Jessica ;
Grebien, Florian ;
Papp, Henrietta ;
Jakab, Ferenc ;
Douangamath, Alice ;
Fearon, Daren ;
von Delft, Frank ;
Schuller, Marion ;
Ahel, Ivan ;
Wakefield, Amanda ;
Vajda, Sandor ;
Gerencser, Janos ;
Pallai, Peter ;
Keseru, Gyoergy M. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Potential SARS-CoV-2 main protease inhibitors [J].
Banerjee, Riddhidev ;
Perera, Lalith ;
Tillekeratne, L. M. Viranga .
DRUG DISCOVERY TODAY, 2021, 26 (03) :804-816
[10]  
Bobby ML, 2023, bioRxiv, DOI [10.1101/2020.10.29.339317, 10.29.339317, 10.1101/2020.10.29.339317, DOI 10.1101/2020.10.29.339317, 10.1101/2020.10.29.339317v3, DOI 10.1101/2020.10.29.339317V4]