Eutectogel-based self-powered wearable sensor for health monitoring in harsh environments

被引:22
|
作者
Wu, Junpeng [1 ]
Teng, Xinru [1 ]
Liu, Lu [1 ]
Cui, Hongzhi [1 ]
Li, Xiaoyi [1 ,2 ]
机构
[1] Ocean Univ China, Coll Mat Sci & Engn, Qingdao 266100, Peoples R China
[2] Henan Univ, Sch Mat Sci & Engn, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475004, Peoples R China
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerators; self-powered; harsh environment; health monitoring; Eutectogel; TRIBOELECTRIC NANOGENERATORS;
D O I
10.1007/s12274-024-6425-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENG) have emerged as a highly promising energy harvesting technology, attracting significant attention in recent years for their broad applications. Gel-based TENGs, with superior stretchability and sensitivity, have been widely reported as wearable sensors. However, the traditional hydrogel-based TENGs suffer from freezing at low temperatures and drying at high temperatures, resulting in malfunctions. In this study, we introduce an anti-freezing eutectogel, which uses a deep eutectic solvent (DES), to improve the stability and electrical conductivity of TENGs in harsh environmental conditions. The eutectogel-based TENG (E-TENG) produces an open-circuit voltage of 776 V, a short-circuit current of 1.54 mu A, and a maximum peak power of 1.1 mW. Moreover, the E-TENG exhibits exceptional mechanical properties with an elongation at a break of 476% under tension. Importantly, it maintains impressive performances across a wide temperature range from -18 to 60 degrees C, with conductivities of 2.15 S/m at -10 degrees C and 1.75 S/m at -18 degrees C. Based on the excellent weight stability of the E-TENG sensor, motion sensing can be achieved in the air, and even underwater. Finally, the versatility of the E-TENG can serve as a wearable sensor, by integrating it with Bluetooth technology. The self-powered E-TENG can monitor various human motion signals in realtime and send the health signals directly to mobile phones. This research paves a new road for the applications of TENGs in harsh environments, offering wireless flexible sensors with real-time health signal monitoring capabilities.
引用
收藏
页码:5559 / 5568
页数:10
相关论文
共 50 条
  • [41] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [42] Design of Self-powered Environment Monitoring Sensor Based on TEG and TENG
    Liu, Jianhao
    Liu, Changxin
    Zhao, Cong
    Li, Huaan
    Qu, Guanghao
    Mao, Zhuofan
    Zhou, Zhenghui
    2021 IEEE 16TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2021, : 749 - 753
  • [43] Self Powered Wearable Health Monitoring System
    Singh, Harkanwal
    Lalchand, Choudhary Mayur
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 3839 - 3846
  • [44] Biomass-based wearable and Self-powered pressure sensor for human motion detection
    Huang, Jieyu
    Hao, Yi
    Zhao, Min
    Qiao, Hui
    Huang, Fenglin
    Li, Dawei
    Wei, Qufu
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 146
  • [45] A SELF-POWERED SENSOR PATCH FOR GLUCOSE MONITORING IN SWEAT
    Cho, E.
    Mohammadifar, M.
    Choi, S.
    30TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2017), 2017, : 366 - 369
  • [46] Self-powered triboelectric sensor for cooling fan monitoring
    Kim, Hakjeong
    Hwang, Hee Jae
    Kim, Wook
    Hong, Seongchan
    Yood, Jongwon
    Lim, Hyeongwook
    Choi, Dukhyun
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2022, 4 (03):
  • [47] Self-Powered Wireless Sensor Network for Environmental Monitoring
    Spachos, Petros
    Hatzinakos, Dimitrios
    2015 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2015,
  • [48] A STRETCHABLE TRIBOELECTRIC NANOGENERATOR BASED ON MOLYBDENUM DISULFIDE FOR WEARABLE SELF-POWERED BIOMOTION MONITORING
    Kim, HongSeok
    Rana, S. M. Sohel
    Faruk, Omar
    Islam, M. Robiul
    Park, Jae Y.
    2023 22ND INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS, POWERMEMS 2023, 2023, : 15 - 18
  • [49] A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers
    Roy, Krittish
    Ghosh, Sujoy Kumar
    Sultana, Ayesha
    Garain, Samiran
    Xie, Mengying
    Bowen, Christopher Rhys
    Henkel, Karsten
    Schmeisser, Dieter
    Mandal, Dipankar
    ACS APPLIED NANO MATERIALS, 2019, 2 (04) : 2013 - 2025
  • [50] Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing
    Misra, Veena
    Bozkurt, Alper
    Calhoun, Benton
    Jackson, Thomas N.
    Jur, Jesse S.
    Lach, John
    Lee, Bongmook
    Muth, John
    Oralkan, Oemer
    Oeztuerk, Mehmet
    Trolier-McKinstry, Susan
    Vashaee, Daryoosh
    Wentzloff, David
    Zhu, Yong
    PROCEEDINGS OF THE IEEE, 2015, 103 (04) : 665 - 681