Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration

被引:1
作者
Wu, Qilong [1 ]
Geng, Zitao [1 ]
Ren, Yi [1 ]
Feng, Qiang [1 ]
Zhong, Jilong [2 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[2] Def Innovat Inst, Acad Mil Sci, Beijing 100071, Peoples R China
基金
中国国家自然科学基金;
关键词
distributed reconfiguration strategy; multi-agent deep reinforcement learning; unmanned aerial vehicle (UAV); UAV swarm redeployment; COVERAGE;
D O I
10.3390/s23239484
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Distributed artificial intelligence is increasingly being applied to multiple unmanned aerial vehicles (multi-UAVs). This poses challenges to the distributed reconfiguration (DR) required for the optimal redeployment of multi-UAVs in the event of vehicle destruction. This paper presents a multi-agent deep reinforcement learning-based DR strategy (DRS) that optimizes the multi-UAV group redeployment in terms of swarm performance. To generate a two-layer DRS between multiple groups and a single group, a multi-agent deep reinforcement learning framework is developed in which a QMIX network determines the swarm redeployment, and each deep Q-network determines the single-group redeployment. The proposed method is simulated using Python and a case study demonstrates its effectiveness as a high-quality DRS for large-scale scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-Agent Deep Reinforcement Learning for Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2232 - 2237
  • [2] Multi-Agent Deep Reinforcement Learning for Trajectory Design and Power Allocation in Multi-UAV Networks
    Zhao, Nan
    Liu, Zehua
    Cheng, Yiqiang
    IEEE ACCESS, 2020, 8 : 139670 - 139679
  • [3] Cooperative Multi-UAV Positioning for Aerial Internet Service Management: A Multi-Agent Deep Reinforcement Learning Approach
    Kim, Joongheon
    Park, Soohyun
    Jung, Soyi
    Cordeiro, Carlos
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 3797 - 3812
  • [4] Multi-UAV Cooperative Searching and Tracking for Moving Targets Based on Multi-Agent Reinforcement Learning
    Su, Kai
    Qian, Feng
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [5] Multi-Agent Deep Reinforcement Learning-Based Trajectory Planning for Multi-UAV Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (01) : 73 - 84
  • [6] A multi-UAV assisted task offloading and path optimization for mobile edge computing via multi-agent deep reinforcement learning
    Ju, Tao
    Li, Linjuan
    Liu, Shuai
    Zhang, Yu
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [7] Task offloading and resource allocation for multi-UAV asset edge computing with multi-agent deep reinforcement learning
    Zakaryia, Samah A.
    Meaad, Mohamed
    Nabil, Tamer
    Hussein, Mohamed K.
    COMPUTING, 2025, 107 (05)
  • [8] Orchestrated Scheduling and Multi-Agent Deep Reinforcement Learning for Cloud-Assisted Multi-UAV Charging Systems
    Jung, Soyi
    Yun, Won Joon
    Shin, MyungJae
    Kim, Joongheon
    Kim, Jae-Hyun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (06) : 5362 - 5377
  • [9] Multi-Agent Deep Reinforcement Learning-Based Multi-UAV Path Planning for Wireless Data Collection and Energy Transfer
    Lee, Chungnyeong
    Lee, Sangcheol
    Kim, Taehoon
    Bang, Inkyu
    Lee, Jung Hoon
    Chae, Seong Ho
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 500 - 504
  • [10] Multi-Agent Deep Reinforcement Learning for Joint Decoupled User Association and Trajectory Design in Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 6056 - 6070