An energy stable discontinuous Galerkin time-domain finite element method in optics and photonics

被引:2
|
作者
Anees, Asad [1 ,2 ]
Angermann, Lutz [3 ]
机构
[1] Axcelis Technol Inc, Beverly, MA 01915 USA
[2] Univ Agr Faisalabad, Dept Math & Stat, Faisalabad 38000, Pakistan
[3] Tech Univ Clausthal, Dept Math, D-38678 Clausthal Zellerfeld, Germany
关键词
Discontinuous Galerkin finite element; method; Energy laws; Nonlinear Maxwell's equations; MAXWELLS EQUATIONS; DIFFERENCE; SCHEMES;
D O I
10.1016/j.rinam.2023.100393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a time-domain discontinuous Galerkin (TDdG) finite element method for the full system of Maxwell's equations in optics and photonics is investigated, including a complete proof of a semi-discrete error estimate. The new capabilities of methods of this type are to efficiently model linear and nonlinear effects, for example of Kerr nonlinearities. Energy stable discretizations both at the semi-discrete and the fully discrete levels are presented. In particular, the proposed semi-discrete scheme is optimally convergent in the spatial variable on Cartesian meshes with Qk-type elements, and the fully discrete scheme is conditionally stable with respect to a specially defined nonlinear electromagnetic energy. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Parallel Implementation of Unconditionally Stable Discontinuous Galerkin Finite Element Time-domain Method
    Bao, Huaguang
    Ding, Dazhi
    Fan, Zhenhong
    Chen, Rushan
    2016 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2016,
  • [2] Discontinuous Galerkin Implementation of Domain Decomposition Time-Domain Finite-Element Method
    Ye, Zhenbao
    Wang, Chao-Fu
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2338 - 2341
  • [3] A Discontinuous Galerkin Finite Element Time-Domain Method Modeling of Dispersive Media
    Gedney, Stephen D.
    Young, John C.
    Kramer, Tyler C.
    Roden, J. Alan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1969 - 1977
  • [4] Modeling of Dispersive Media within the Discontinuous Galerkin Finite Element Time-Domain Method
    Gedney, Stephen D.
    Young, John
    Kramer, Tyler
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [5] ENERGY STABLE TIME DOMAIN FINITE ELEMENT METHODS FOR NONLINEAR MODELS IN OPTICS AND PHOTONICS
    Anees, Asad
    Angermann, Lutz
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 511 - 541
  • [6] The Discontinuous Galerkin Finite Element Time Domain Method (DGFETD)
    Gedney, S. D.
    Kramer, T.
    Luo, C.
    Roden, J. A.
    Crawford, R.
    Guernsey, B.
    Beggs, John
    Miller, J. A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3, 2008, : 768 - +
  • [7] A Discontinuous Galerkin Finite Element Time Domain Method with PML
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Lucas, Eric W.
    2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 2014 - +
  • [8] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [9] SPICE Lumped Circuit Subcell Model for the Discontinuous Galerkin Finite Element Time-Domain Method
    Zhao, Bo
    Young, John
    Gedney, Stephen D.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2962 - 2964
  • [10] A LAGUERRE-BASED TIME-DOMAIN DISCONTINUOUS GALERKIN FINITE ELEMENT-BOUNDARY INTEGRAL METHOD
    Tian, Cheng-Yi
    Shi, Yan
    Liu, Zhi-Qi
    Liang, Chang-Hong
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2016, 58 (11) : 2774 - 2780