An energy stable discontinuous Galerkin time-domain finite element method in optics and photonics

被引:2
作者
Anees, Asad [1 ,2 ]
Angermann, Lutz [3 ]
机构
[1] Axcelis Technol Inc, Beverly, MA 01915 USA
[2] Univ Agr Faisalabad, Dept Math & Stat, Faisalabad 38000, Pakistan
[3] Tech Univ Clausthal, Dept Math, D-38678 Clausthal Zellerfeld, Germany
关键词
Discontinuous Galerkin finite element; method; Energy laws; Nonlinear Maxwell's equations; MAXWELLS EQUATIONS; DIFFERENCE; SCHEMES;
D O I
10.1016/j.rinam.2023.100393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a time-domain discontinuous Galerkin (TDdG) finite element method for the full system of Maxwell's equations in optics and photonics is investigated, including a complete proof of a semi-discrete error estimate. The new capabilities of methods of this type are to efficiently model linear and nonlinear effects, for example of Kerr nonlinearities. Energy stable discretizations both at the semi-discrete and the fully discrete levels are presented. In particular, the proposed semi-discrete scheme is optimally convergent in the spatial variable on Cartesian meshes with Qk-type elements, and the fully discrete scheme is conditionally stable with respect to a specially defined nonlinear electromagnetic energy. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:22
相关论文
共 37 条
[1]   A Parallel Finite-Element Time-Domain Method for Nonlinear Dispersive Media [J].
Abraham, David S. ;
Giannacopoulos, Dennis D. .
IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (02)
[2]   A Convolution-Free Finite-Element Time-Domain Method for the Nonlinear Dispersive Vector Wave Equation [J].
Abraham, David S. ;
Giannacopoulos, Dennis D. .
IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (12)
[3]   A Perfectly Matched Layer for the Nonlinear Dispersive Finite-Element Time-Domain Method [J].
Abraham, David S. ;
Giannacopoulos, Dennis D. .
IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
[4]  
Anees A, 2016 IEEE INT C WIR, P179, DOI [10.1109/ROPACES.2016.7465375, DOI 10.1109/ROPACES.2016.7465375]
[5]  
Anees A, 2020, Ph.D. thesis, DOI [10.21268/20200414-1, DOI 10.21268/20200414-1]
[6]  
Anees A, 2018, 2018 INT APPL COMPUT, DOI [10.23919/ROPACES.2018.8364189, DOI 10.23919/ROPACES.2018.8364189]
[7]   Energy-Stable Time-Domain Finite Element Methods for the 3D Nonlinear Maxwell's Equations [J].
Anees, Asad ;
Angermann, Lutz .
IEEE PHOTONICS JOURNAL, 2020, 12 (02)
[8]   Time Domain Finite Element Method for Maxwell's Equations [J].
Anees, Asad ;
Angermann, Lutz .
IEEE ACCESS, 2019, 7 :63852-63867
[9]   High Spatial Order Energy Stable FDTD Methods for Maxwell's Equations in Nonlinear Optical Media in One Dimension [J].
Bokil, Vrushali A. ;
Cheng, Yingda ;
Jiang, Yan ;
Li, Fengyan ;
Sakkaplangkul, Puttha .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :330-371
[10]   Energy stable discontinuous Galerkin methods for Maxwell's equations in nonlinear optical media [J].
Bokil, Vrushali A. ;
Cheng, Yingda ;
Jiang, Yan ;
Li, Fengyan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 :420-452