Porous Polymer Materials in Triboelectric Nanogenerators: A Review

被引:15
作者
Mi, Yajun [1 ]
Zhao, Zequan [1 ]
Wu, Han [2 ]
Lu, Yin [1 ,2 ]
Wang, Ning [1 ]
机构
[1] Univ Sci & Technol Beijing, Ctr Green Innovat, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Natl Elect Comp Qual Inspect & Testing Ctr, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
porous polymers; triboelectric nanogenerator; energy harvester; self-powered sensor; multifunctionality; PERFORMANCE; SPONGE; POWER; POLYDIMETHYLSILOXANE; FILMS;
D O I
10.3390/polym15224383
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] Biopolymer Materials in Triboelectric Nanogenerators: A Review
    Zhu, Qiliang
    Sun, Enqi
    Zhao, Zequan
    Wu, Tong
    Meng, Shuchang
    Ma, Zimeng
    Shoaib, Muhammad
    Ur Rehman, Hafeez
    Cao, Xia
    Wang, Ning
    POLYMERS, 2024, 16 (10)
  • [2] A review on recent advancement in materials for piezoelectric/triboelectric nanogenerators
    Mahapatra, Brahmadutta
    Patel, Krishna Kumar
    Vidya
    Patel, Piyush K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 5523 - 5529
  • [3] Polymer-based triboelectric nanogenerators: Materials, characterization, and applications
    Shanbedi, Mina
    Ardebili, Haleh
    Karim, Alamgir
    PROGRESS IN POLYMER SCIENCE, 2023, 144
  • [4] Recent Progress of Advanced Materials for Triboelectric Nanogenerators
    Liu, Di
    Zhang, Jiayue
    Cui, Shengnan
    Zhou, Linglin
    Gao, Yikui
    Wang, Zhong Lin
    Wang, Jie
    SMALL METHODS, 2023, 7 (10)
  • [5] Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends
    Dzhardimalieva, Gulzhian, I
    Yadav, Bal C.
    Lifintseva, Tat'yana, V
    Uflyand, Igor E.
    EUROPEAN POLYMER JOURNAL, 2021, 142
  • [6] Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators
    Khandelwal, Gaurav
    Raj, Nirmal Prashanth Maria Joseph
    Kim, Sang-Jae
    ADVANCED ENERGY MATERIALS, 2021, 11 (33)
  • [7] Dynamics of triboelectric nanogenerators: A review
    Xu, Guoqiang
    Li, Chuanyang
    Chen, Chaojie
    Fu, Jingjing
    Hou, Tingting
    Zi, Yunlong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2022, 2 (04): : 311 - 324
  • [8] Triboelectric nanogenerators in harsh conditions: A critical review
    Callaty, C.
    Rodrigues, C.
    Ventura, J.
    NANO ENERGY, 2025, 135
  • [9] Self-Assembly of Porous Microstructured Polydimethylsiloxane Films for Wearable Triboelectric Nanogenerators
    Yang, Yujue
    Jing, Titao
    Xu, Bingang
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (09)
  • [10] A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges
    Davoudi, Mohammadmahdi
    An, Chi-Yoon
    Kim, Dae-Eun
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2024, 11 (04) : 1317 - 1340