The adjoint Reidemeister torsion for the connected sum of knots

被引:1
作者
Porti, Joan [1 ]
Yoon, Seokbeom [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Cerdanyola Del Valles 08193, Spain
关键词
Connected sum; Reidemeister torsion; vanishing identity; character variety; VARIETY;
D O I
10.4171/QT/180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the connected sum of knots K-1, ... , K-n. It is known that the SL2(C)- character variety of the knot exterior of K has a component of dimension >= 2 as the connected sum admits a so-called bending. We show that there is a natural way to define the adjoint Reidemeister torsion for such a high-dimensional component and prove that it is locally constant on a subset of the character variety where the trace of a meridian is constant. We also prove that the adjoint Reidemeister torsion of K satisfies the vanishing identity if each K-i does so.
引用
收藏
页码:407 / 428
页数:22
相关论文
共 18 条
  • [1] Burde Gerhard, 2014, DEGRUYTER STUDIES MA, V5
  • [2] THE SL(2, C)-CHARACTER VARIETY OF A MONTESINOS KNOT
    Chen, Haimiao
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2022, 59 (01) : 75 - 91
  • [3] Remarks on the A-polynomial of a knot
    Cooper, D
    Long, DD
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1996, 5 (05) : 609 - 628
  • [4] PLANE-CURVES ASSOCIATED TO CHARACTER VARIETIES OF 3-MANIFOLDS
    COOPER, D
    CULLER, M
    GILLET, H
    LONG, DD
    SHALEN, PB
    [J]. INVENTIONES MATHEMATICAE, 1994, 118 (01) : 47 - 84
  • [5] The quantum content of the gluing equations
    Dimofte, Tudor
    Garoufalidis, Stavros
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (03) : 1253 - 1315
  • [6] Dubois J., 2003, Ph.D. thesis
  • [7] Gang D, 2021, ADV THEOR MATH PHYS, V25, P1819
  • [8] Precision microstate counting for the entropy of wrapped M5-branes
    Gang, Dongmin
    Kim, Nakwoo
    Zayas, Leopoldo A. Pando
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (03)
  • [9] Jaco W., 1980, Reg. Conf. Ser. Math.
  • [10] Johnson D., 1987, DISCRETE GROUPS GEOM, V67, P48, DOI 10.1007/978-1-4899-6664-3_3