Automated design of a 3D passive microfluidic particle sorter

被引:2
作者
Lai, Kuan-Ming [1 ]
Liu, Zhenya [2 ]
Zhang, Yidan [2 ]
Wang, Junchao [2 ]
Ho, Tsung-Yi [3 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu, Taiwan
[2] Hangzhou Dianzi Univ, Zhejiang Key Lab Large Scale Integrated Circuit De, Hangzhou, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
CIRCULATING TUMOR-CELLS; SEPARATION; BIOCHIPS; SIZE;
D O I
10.1063/5.0169562
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic chips that can sort mixtures of cells and other particles have important applications in research and healthcare. However, designing a sorter chip for a given application is a slow and difficult process, especially when we extend the design space from 2D into a 3D scenario. Compared to the 2D scenario, we need to explore more geometries to derive the appropriate design due to the extra dimension. To evaluate sorting performance, the simulation of the particle trajectory is needed. The 3D scenario brings particle trajectory simulation more challenges of runtime and collision handling with irregular obstacle shapes. In this paper, we propose a framework to design a 3D microfluidic particle sorter for a given application with an efficient 3D particle trajectory simulator. The efficient simulator enables us to simulate more samples to ensure the robustness of the sorting performance. Our experimental result shows that the sorter designed by our framework successfully separates the particles with the targeted size.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp [J].
Kung, Yu-Chun ;
Huang, Kuo-Wei ;
Fan, Yu-Jui ;
Chiou, Pei-Yu .
LAB ON A CHIP, 2015, 15 (08) :1861-1868
[22]   A single particle plasmon resonance study of 3D conical nanoantennas [J].
Schaefer, Christian ;
Gollmer, Dominik A. ;
Horrer, Andreas ;
Fulmes, Julia ;
Weber-Bargioni, Alexander ;
Cabrini, Stefano ;
Schuck, P. James ;
Kern, Dieter P. ;
Fleischer, Monika .
NANOSCALE, 2013, 5 (17) :7861-7866
[23]   3D boundary line measurement of irregular particle with digital holography [J].
Wu, Yingchun ;
Wu, Xuecheng ;
Yao, Longchao ;
Brunel, Marc ;
Coetmellec, Sebastien ;
Lebrun, Denis ;
Grehan, Gerard ;
Cen, Kefa .
POWDER TECHNOLOGY, 2016, 295 :96-103
[24]   Enhanced Particle Trap: Design and Simulation of Pillar-Based Contactless Dielectrophoresis Microfluidic Devices [J].
Harchegani, Peyman Torky ;
Keshtiban, Mohsen Mashhadi ;
Zand, Mahdi Moghimi ;
Azizi, Zahra .
ELECTROPHORESIS, 2025, 46 (3-4) :232-239
[25]   Characterization of Particle Shape with an Improved 3D Light Scattering Sensor (3D-LSS) for Aerosols [J].
Weirich, Marc ;
Misiulia, Dzmitry ;
Antonyuk, Sergiy .
SENSORS, 2024, 24 (03)
[26]   Automated Assembly of Biological Cells in a 3D Scaffold via Dielectrophoresis Manipulation [J].
Huan, Zhijie ;
Chu, Henry K. ;
Yang, Jie ;
Sun, Dong .
2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, :345-349
[27]   Automated System for Measuring Full Size Human Body 3D Scan [J].
Golovin, Mikhail A. ;
Petrauskasl, Marina, V ;
Fogt, Elizaveta, V .
PROCEEDINGS OF THE 2021 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (ELCONRUS), 2021, :369-372
[28]   Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers [J].
Yin, Pengju ;
Zhao, Lei ;
Chen, Zezhou ;
Jiao, Zhiqiang ;
Shi, Hongyan ;
Hu, Bo ;
Yuan, Shifang ;
Tian, Jie .
SOFT MATTER, 2020, 16 (12) :3096-3105
[29]   Simultaneous measurement of 3D velocity and 2D rotation of irregular particle with digital holographic particle tracking velocimetry [J].
Wu, Yingchun ;
Wu, Xuecheng ;
Yao, Longchao ;
Brunel, Marc ;
Coetmellec, Sebastien ;
Lebrun, Denis ;
Grehan, Gerard ;
Cen, Kefa .
POWDER TECHNOLOGY, 2015, 284 :371-378
[30]   Particle shape matters - Using 3D printed particles to investigate fundamental particle and packing properties [J].
Landauer, Johann ;
Kuhn, Michael ;
Nasato, Daniel S. ;
Foerst, Petra ;
Briesen, Heiko .
POWDER TECHNOLOGY, 2020, 361 :711-718