Least trimmed squares regression;
stable errors;
order statistics;
BREAKDOWN;
D O I:
10.1142/S0219477523500499
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Least Trimmed Squares (LTS) is a robust regression method with respect to outliers. It is based on performing Ordinary Least Squares (OLS) estimates on sub-datasets and determining the optimal solution corresponding to the minimum sum of squared residuals. Since the method of LTS is based on OLS, errors in regression models have finite variance. This work aims to generalize LTS for heavy tail data with infinite variance. When errors have infinite variance, it is impossible to benefit from OLS estimates. We use the property of variance existence of most ordered errors to find an initial robust OLS estimate. We polish the LTS method with a maximum likelihood estimator based on the density function of order statistics and determine the optimal solution for stable regression models. The proposed algorithm is implemented for linear regression models.
机构:
Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Mount, David M.
Netanyahu, Nathan S.
论文数: 0引用数: 0
h-index: 0
机构:
Bar Ilan Univ, Dept Comp Sci, IL-52900 Ramat Gan, Israel
Univ Maryland, Ctr Automat Res, College Pk, MD 20742 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Netanyahu, Nathan S.
Piatko, Christine D.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Piatko, Christine D.
Silverman, Ruth
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Ctr Automat Res, College Pk, MD 20742 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Silverman, Ruth
Wu, Angela Y.
论文数: 0引用数: 0
h-index: 0
机构:
Amer Univ, Dept Comp Sci, Washington, DC 20016 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA