THE APPROXIMATION RATIO OF THE k-OPT HEURISTIC FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

被引:5
|
作者
Brodowsky, Ulrich A.
Hougardy, Stefan [1 ,2 ]
Zhong, Xianghui [1 ,2 ]
机构
[1] Univ Bonn, Res Inst Discrete Math, D-53113 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53113 Bonn, Germany
关键词
traveling salesman problem; Euclidean TSP; approximation algorithm; k-Opt heuristic; ALGORITHM;
D O I
10.1137/21M146199X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-Opt heuristic is a simple improvement heuristic for the traveling salesman prob-lem. It starts with an arbitrary tour and then repeatedly replaces k edges of the tour by k other edges, as long as this yields a shorter tour. We will prove that for the 2-dimensional Euclidean traveling salesman problem with n cities the approximation ratio of the k-Opt heuristic is theta(log n/ log log n). This improves the upper bound of O(log n) given by Chandra, Karloff, and Tovey in [SIAM J. Com-put., 28 (1999), pp. 1998--2029] and provides for the first time a nontrivial lower bound for the case k >= 3. Our results not only hold for the Euclidean norm but extend to arbitrary p-norms with 1 <= p < infinity .
引用
收藏
页码:841 / 864
页数:24
相关论文
共 50 条
  • [41] A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem
    Liu, S. B.
    Ng, K. M.
    Ong, H. L.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 21, 2007, 21 : 267 - 271
  • [42] An application of the self-organizing map in the non-Euclidean Traveling Salesman Problem
    Faigl, Jan
    Kulich, Miroslav
    Vonasek, Vojtech
    Preucil, Libor
    NEUROCOMPUTING, 2011, 74 (05) : 671 - 679
  • [43] Average Case Subquadratic Exact and Heuristic Procedures for the Traveling Salesman 2-OPT Neighborhood
    Lancia, Giuseppe
    Vidoni, Paolo
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [44] Lower bounds on the integrality ratio of the subtour LP for the traveling salesman problem
    Zhong, Xianghui
    DISCRETE APPLIED MATHEMATICS, 2025, 365 : 109 - 129
  • [45] Honey bees mating optimization algorithm for the Euclidean traveling salesman problem
    Marinakis, Yannis
    Marinaki, Magdalene
    Dounias, Georgios
    INFORMATION SCIENCES, 2011, 181 (20) : 4684 - 4698
  • [46] GRASP with path relinking for the symmetric Euclidean clustered traveling salesman problem
    Mestria, Mario
    Ochi, Luiz Satoru
    Martins, Simone de Lima
    COMPUTERS & OPERATIONS RESEARCH, 2013, 40 (12) : 3218 - 3229
  • [47] Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
    Arora, S
    JOURNAL OF THE ACM, 1998, 45 (05) : 753 - 782
  • [48] 3-Approximation algorithm for a two depot, heterogeneous traveling salesman problem
    Yadlapalli, Sai
    Rathinam, Sivakumar
    Darbha, Swaroop
    OPTIMIZATION LETTERS, 2012, 6 (01) : 141 - 152
  • [49] 3-Approximation algorithm for a two depot, heterogeneous traveling salesman problem
    Sai Yadlapalli
    Sivakumar Rathinam
    Swaroop Darbha
    Optimization Letters, 2012, 6 : 141 - 152
  • [50] AN IMPROVED APPROXIMATION ALGORITHM FOR THE ASYMMETRIC TRAVELING SALESMAN PROBLEM\ast
    Traub, Vera
    Vygen, Jens
    SIAM JOURNAL ON COMPUTING, 2022, 51 (01) : 139 - 173