THE APPROXIMATION RATIO OF THE k-OPT HEURISTIC FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

被引:5
|
作者
Brodowsky, Ulrich A.
Hougardy, Stefan [1 ,2 ]
Zhong, Xianghui [1 ,2 ]
机构
[1] Univ Bonn, Res Inst Discrete Math, D-53113 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53113 Bonn, Germany
关键词
traveling salesman problem; Euclidean TSP; approximation algorithm; k-Opt heuristic; ALGORITHM;
D O I
10.1137/21M146199X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-Opt heuristic is a simple improvement heuristic for the traveling salesman prob-lem. It starts with an arbitrary tour and then repeatedly replaces k edges of the tour by k other edges, as long as this yields a shorter tour. We will prove that for the 2-dimensional Euclidean traveling salesman problem with n cities the approximation ratio of the k-Opt heuristic is theta(log n/ log log n). This improves the upper bound of O(log n) given by Chandra, Karloff, and Tovey in [SIAM J. Com-put., 28 (1999), pp. 1998--2029] and provides for the first time a nontrivial lower bound for the case k >= 3. Our results not only hold for the Euclidean norm but extend to arbitrary p-norms with 1 <= p < infinity .
引用
收藏
页码:841 / 864
页数:24
相关论文
共 50 条
  • [21] Nonoblivious 2-Opt Heuristics for the Traveling Salesman Problem
    Levin, Asaf
    Yovel, Uri
    NETWORKS, 2013, 62 (03) : 201 - 219
  • [22] A Multistart Heuristic for the Equality Generalized Traveling Salesman Problem
    Cacchiani, Valentina
    Fernandes Muritiba, Albert Einstein
    Negreiros, Marcos
    Toth, Paolo
    NETWORKS, 2011, 57 (03) : 231 - 239
  • [23] Study on a new heuristic crossover for the traveling salesman problem
    Hu, Qiaohua
    Wu, Huaiyu
    Chen, Qiaoli
    Chen, Yuan
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 495 - +
  • [24] COMBINING 2-OPT, 3-OPT AND 4-OPT WITH K-SWAP-KICK PERTURBATIONS FOR THE TRAVELING SALESMAN PROBLEM
    Blazinskas, Andrius
    Misevicius, Alfonsas
    INFORMATION TECHNOLOGIES' 2011, 2011, : 45 - 50
  • [25] An efficient heuristic algorithm for the bottleneck traveling salesman problem
    Ramakrishnan R.
    Sharma P.
    Punnen A.P.
    OPSEARCH, 2009, 46 (3) : 275 - 288
  • [26] Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic
    Yu, Vincent F.
    Lin, Shih-Wei
    Jodiawan, Panca
    Lai, Yu-Chi
    MATHEMATICS, 2023, 11 (20)
  • [27] On the integrality ratio for the asymmetric traveling salesman problem
    Charikar, Moses
    Goemans, Michel X.
    Karloff, Howard
    MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (02) : 245 - 252
  • [28] A PARALLEL 2-OPT ALGORITHM FOR THE TRAVELING-SALESMAN PROBLEM
    VERHOEVEN, MGA
    AARTS, EHL
    SWINKELS, PCJ
    FUTURE GENERATION COMPUTER SYSTEMS, 1995, 11 (02) : 175 - 182
  • [29] Fourier descriptors for 2-Opt and 3-Opt heuristics for traveling salesman problem
    Hsieh, Kuang-Han
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2011, 28 (03) : 237 - 246
  • [30] Approximation of the Double Traveling Salesman Problem with Multiple Stacks
    Alfandari, Laurent
    Toulouse, Sophie
    THEORETICAL COMPUTER SCIENCE, 2021, 877 : 74 - 89