THE APPROXIMATION RATIO OF THE k-OPT HEURISTIC FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

被引:8
作者
Brodowsky, Ulrich A.
Hougardy, Stefan [1 ,2 ]
Zhong, Xianghui [1 ,2 ]
机构
[1] Univ Bonn, Res Inst Discrete Math, D-53113 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53113 Bonn, Germany
关键词
traveling salesman problem; Euclidean TSP; approximation algorithm; k-Opt heuristic; ALGORITHM;
D O I
10.1137/21M146199X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-Opt heuristic is a simple improvement heuristic for the traveling salesman prob-lem. It starts with an arbitrary tour and then repeatedly replaces k edges of the tour by k other edges, as long as this yields a shorter tour. We will prove that for the 2-dimensional Euclidean traveling salesman problem with n cities the approximation ratio of the k-Opt heuristic is theta(log n/ log log n). This improves the upper bound of O(log n) given by Chandra, Karloff, and Tovey in [SIAM J. Com-put., 28 (1999), pp. 1998--2029] and provides for the first time a nontrivial lower bound for the case k >= 3. Our results not only hold for the Euclidean norm but extend to arbitrary p-norms with 1 <= p < infinity .
引用
收藏
页码:841 / 864
页数:24
相关论文
共 19 条
[1]   Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems [J].
Arora, S .
JOURNAL OF THE ACM, 1998, 45 (05) :753-782
[2]  
Bentley J. L., 1992, ORSA Journal on Computing, V4, P387, DOI 10.1287/ijoc.4.4.387
[3]   New results on the old k-opt algorithm for the traveling salesman problem [J].
Chandra, B ;
Karloff, H ;
Tovey, C .
SIAM JOURNAL ON COMPUTING, 1999, 28 (06) :1998-2029
[4]  
Christofides Nicos, 1976, Report 388
[5]   Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the TSP [J].
Englert, Matthias ;
Roeglin, Heiko ;
Voecking, Berthold .
ALGORITHMICA, 2014, 68 (01) :190-264
[6]   THE TRAVELING-SALESMAN PROBLEM [J].
FLOOD, MM .
OPERATIONS RESEARCH, 1956, 4 (01) :61-75
[7]  
Garey M. R., 1979, Computers and intractability. A guide to the theory of NP-completeness
[8]   The approximation ratio of the 2-Opt Heuristic for the metric Traveling Salesman Problem [J].
Hougardy, Stefan ;
Zaiser, Fabian ;
Zhong, Xianghui .
OPERATIONS RESEARCH LETTERS, 2020, 48 (04) :401-404
[9]  
Karlin Anna R., 2022, arXiv
[10]   On syntactic versus computational views of approximability [J].
Khanna, S ;
Motwani, R ;
Sudan, M ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1998, 28 (01) :164-191