Techno-economic analysis of carbon dioxide capture from low concentration sources using membranes

被引:9
|
作者
Adhikari, Birendra [1 ]
Orme, Christopher J. [1 ]
Stetson, Caleb [1 ]
Klaehn, John R. [1 ]
机构
[1] Idaho Natl Lab INL, Mat Separat & Anal Dept, Chem Separat Grp, 1955 Fremont Ave, Idaho Falls, ID 83402 USA
关键词
Carbon capture; Membrane -based gas separation; Techno-economic analysis; Staged membrane system; Global warming; GAS-TRANSPORT; CO2; CO2/N-2; SELECTIVITY; ABSORPTION; SEPARATION; PERMEANCE;
D O I
10.1016/j.cej.2023.145876
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rising carbon dioxide (CO2) levels in the atmosphere lead to global warming, causing climate change. As such, carbon capture has become necessary to slow the increase and reduce CO2 levels in the atmosphere. Point source emissions have a wide range of CO2 concentrations, but emissions below 3% CO2 have mostly been ignored because Carbon capture from these sources has been viewed as costly and economically unsustainable. Membrane technologies are considered the most viable solution by virtue of more energy-efficient operation. Our group at Idaho National Laboratory (INL) has developed poly[bis((2-methoxyethoxy)ethoxy)phosphazene] (MEEP)-based carbon dioxide selective membranes with CO2/N2 selectivity greater than 40 and CO2 permeability greater than 450 Barrer. To understand the economics of carbon capture, a spreadsheet-based technoeconomic analysis (TEA) model was developed to consider multiple parameters, including selectivity and permeability of the membranes, performance conditions such as the number of stages, module material, electricity price, membrane price, and capital financing. The cost of carbon capture in US$/metric ton was calculated at various purities and compared with other membrane processes, cryogenic capture, solvent-based capture, and pressure swing adsorption-based capture. It was determined that a MEEP-based three-stage process had a capture cost of US$ 50.1/metric ton for 99.8% purity CO2 from a 1% CO2 feed source in nitrogen (N2). The capture cost using the best performing Pebax-based membrane was 464% higher, cryogenic capture was 60%-140% higher, pressure swing adsorption was 55%-165% higher, and chemical absorption was - 10%-110% higher than MEEPbased membrane capture, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage
    Hammond, G. P.
    Akwe, S. S. Ondo
    Williams, S.
    ENERGY, 2011, 36 (02) : 975 - 984
  • [42] Comparative techno-economic analysis of CO2 capture processes using blended amines
    Ding, Xuechong
    Chen, Haijun
    Li, Jue
    Zhou, Teng
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2023, 9
  • [43] Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options
    Yang, F.
    Meerman, J. C.
    Faaij, A. P. C.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 144
  • [44] Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation
    Daniel, Thorin
    Masini, Alice
    Milne, Cameron
    Nourshagh, Neeka
    Iranpour, Cameron
    Xuan, Jin
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
  • [45] Techno-economic assessment of waste heat recovery enhancement using multi-channel ceramic membrane in carbon capture process
    Tu, Te
    Liu, Shuo
    Cui, Qiufang
    Xu, Liqiang
    Ji, Long
    Yan, Shuiping
    CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [46] Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation
    Lv, Zongze
    Du, Hong
    Xu, Shaojun
    Deng, Tao
    Ruan, Jiaqi
    Qin, Changlei
    APPLIED ENERGY, 2024, 355
  • [47] Rate-based simulation and techno-economic analysis of coal-fired power plants with aqueous ammonia carbon capture
    Bonalumi, Davide
    Lillia, Stefano
    Valenti, Gianluca
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [48] Scale-Dependent Techno-Economic Analysis of CO2 Capture and Electroreduction to Ethylene
    Alerte, Theo
    Gaona, Adriana
    Edwards, Jonathan P.
    Gabardo, Christine M.
    O'Brien, Colin P.
    Wicks, Joshua
    Bonnenfant, Loann
    Rasouli, Armin Sedighian
    Young, Daniel
    Abed, Jehad
    Kershaw, Luke
    Xiao, Yurou Celine
    Sarkar, Amitava
    Jaffer, Shaffiq A.
    Schreiber, Moritz W.
    Sinton, David
    MacLean, Heather L.
    Sargent, Edward H.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (43): : 15651 - 15662
  • [49] Temperature-Pressure Swing Process for Reactive Carbon Capture and Conversion to Methanol: Techno-Economic Analysis and Life Cycle Assessment
    Martin, Jonathan A.
    Tan, Eric C. D.
    Ruddy, Daniel A.
    King, Jennifer
    To, Anh T.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (31) : 13737 - 13747
  • [50] Membranes for Carbon Dioxide Capture from Kuwait Power Stations: Process and Economic Analysis
    Alqaheem, Y.
    INTERNATIONAL JOURNAL OF THERMODYNAMICS, 2021, 24 (04) : 72 - 77