Electrospun polyimide/cellulose acetate propionate nanofiber membrane-based gel polymer electrolyte with fast lithium-ion transport and high interface stability for lithium metal batteries

被引:5
|
作者
Gao, Chao [1 ,2 ]
Li, Xinping [2 ]
Song, Changyong [1 ]
Wei, Guijuan [1 ]
Zhao, Xixia [1 ]
Wang, Shoujuan [1 ]
Kong, Fangong [1 ,2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, State Key Lab Biobased Mat & Green Papermaking, Fac Light Ind,Key Lab Pulp & Paper Sci & Technol,M, Jinan 250353, Peoples R China
[2] Shaanxi Univ Sci & Technol, Natl Demonstrat Ctr Expt Light Chem Engn Educ, Shaanxi Prov Key Lab Papermaking Technol & Special, Key Lab Paper Based Funct Mat China Natl Light Ind, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Gel polymer electrolyte; Composite matrix; Polyimide; Cellulose acetate propionate; Electrospinning; THERMAL-STABILITY; SOLID-ELECTROLYTE; HIGH-PERFORMANCE; CELLULOSE; SEPARATOR; HOST;
D O I
10.1007/s10570-023-05434-y
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Polyimide (PI)-based gel polymer electrolytes (GPEs) have been regarded as a hopeful alternative to liquid electrolytes to build safer lithium metal batteries due to their high thermal stability, chemical resistance, insulation properties, and self-extinguishing abilities. However, limited electrolyte affinity and low mechanical strength hindered their application in quasi-solid lithium metal batteries. In this work, a novel composite GPE matrix consisting of highly thermo-stable PI and eco-friendly cellulose acetate propionate (CAP) nanofibers was successfully fabricated by electrospinning. CAP was introduced for the first time to improve the electrolyte wettability by providing polar functional groups and to offer favorable thermal/mechanical properties via hydrogen bonding with the rigid PI chains. As a result, the obtained PI-CAP composite matrix showed ultra-flexibility, high mechanical strength (7.1 MPa), and excellent thermal stability (over 200 & DEG;C). The PI-CAP GPE exhibited high ionic conductivity (2.09 x 10(-3) S cm(-1)) and Li+ transference number (0.89). The assembled LiFePO4/PI-CAP GPE/Li cell displayed a high capacity retention up to 95% after 300 cycles at 1 C and showed better rate capability than the LiFePO4/PI GPE/Li cell. The positive effects of CAP on inhibiting lithium dendrite growth and promoting the generation of stable SEI were also confirmed through SEM results of cycled lithium metals. The results indicate that the PI-CAP GPE has a good potential as a cellulose-based quasi-solid electrolyte for lithium metal batteries.
引用
收藏
页码:9113 / 9126
页数:14
相关论文
共 50 条
  • [31] Room temperature lithium metal batteries based on a new Gel Polymer Electrolyte membrane
    Sannier, L
    Bouchet, R
    Grugeon, S
    Naudin, E
    Vidal, E
    Tarascon, JM
    JOURNAL OF POWER SOURCES, 2005, 144 (01) : 231 - 237
  • [32] Graphite oxide dopping polyimide nanofiber membrane via electrospinning for high performance lithium-ion batteries
    Wang, Linlin
    Liu, Fan
    Shao, Weili
    Cui, Shizhong
    Zhao, Yaomin
    Zhou, Yuman
    He, Jianxin
    COMPOSITES COMMUNICATIONS, 2019, 16 : 150 - 157
  • [33] Novel cellulose aerogel coated on polypropylene separators as gel polymer electrolyte with high ionic conductivity for lithium-ion batteries
    Liao, Haiyang
    Zhang, Haiyan
    Hong, Haoqun
    Li, Zhenghui
    Qin, Gai
    Zhu, Haiping
    Lin, Yingxi
    JOURNAL OF MEMBRANE SCIENCE, 2016, 514 : 332 - 339
  • [34] A Cellulose/Polyethylene Oxide Gel Polymer Electrolyte with Enhanced Mechanical Strength and High Ionic Conductivity for Lithium-Ion Batteries
    Li, Chunxing
    Ou, Liqi
    Liu, Yi
    Xu, Linhe
    Zhou, Shuang
    Guo, Liping
    Liu, Hao
    Zhang, Ze
    Cui, Meng
    Chen, Gang
    Huang, Jianlin
    Tao, Jinsong
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (12)
  • [35] Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries
    Li, Linge
    Wang, Mingchao
    Wang, Jian
    Ye, Fangmin
    Wang, Shaofei
    Xu, Yanan
    Liu, Jingyu
    Xu, Guoguang
    Zhang, Yue
    Zhang, Yongyi
    Yan, Cheng
    Medhekar, Nikhil V.
    Liu, Meinan
    Zhang, Yuegang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) : 8033 - 8040
  • [36] High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries
    Zhao, Lingzhu
    Fu, Jingchuan
    Du, Zhi
    Jia, Xiaobo
    Qu, Yanyu
    Yu, Feng
    Du, Jie
    Chen, Yong
    JOURNAL OF MEMBRANE SCIENCE, 2020, 593 (593)
  • [37] High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries
    Huang, Xueyan
    Zeng, Songshan
    Liu, Jingjing
    He, Ting
    Sun, Luyi
    Xu, Donghui
    Yu, Xiaoyuan
    Luo, Ying
    Zhou, Wuyi
    Wu, Jianfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (50): : 27882 - 27891
  • [38] Porous polymer membrane with uniform lithium-ion transport via phase separation for stable lithium metal batteries
    Wu, Shaoping
    Li, Guoyao
    Liu, Hezhou
    Duan, Huanan
    JOURNAL OF POWER SOURCES, 2022, 547
  • [39] A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability
    Zhang, Yunfeng
    Rohan, Rupesh
    Sun, Yubao
    Cai, Weiwei
    Xu, Guodong
    Lin, An
    Cheng, Hansong
    RSC ADVANCES, 2014, 4 (40) : 21163 - 21170
  • [40] Fabrication of solid polymer electrolyte based on carboxymethyl cellulose complexed with lithium acetate salt as Lithium-ion battery separator
    Darmawan, Dhea Afrisa
    Yulianti, Evi
    Sabrina, Qolby
    Ishida, Kensuke
    Sakti, Aditya Wibawa
    Nakai, Hiromi
    Pramono, Edi
    Ndruru, Sun Theo Constan Lotebulo
    POLYMER COMPOSITES, 2024, 45 (03) : 2032 - 2049