Best practices for experiments and reporting in photocatalytic CO2 reduction

被引:123
作者
Bonchio, Marcella [1 ,2 ]
Bonin, Julien [3 ]
Ishitani, Osamu [4 ,5 ]
Lu, Tong-Bu [6 ]
Morikawa, Takeshi [7 ]
Morris, Amanda J. [8 ]
Reisner, Erwin [9 ]
Sarkar, Debashrita [3 ]
Toma, Francesca M. [10 ,11 ,12 ]
Robert, Marc [3 ,13 ]
机构
[1] Univ Padua, Dept Chem Sci, Padua, Italy
[2] UoS Padova, Inst Tecnol Membrane, INSTM UdR Padova, ITM CNR, Padua, Italy
[3] Univ Paris Cite, Lab Electrochim Mol, CNRS, Paris, France
[4] Tokyo Inst Technol, Dept Chem, Tokyo, Japan
[5] Hiroshima Univ, Grad Sch Adv Sci & Engn, Dept Chem, Hiroshima, Japan
[6] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin, Peoples R China
[7] Toyota Cent Res & Dev Labs Inc, Nagakute, Aichi, Japan
[8] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA USA
[9] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge, England
[10] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA USA
[11] Helmholtz Zentrum Hereon, Inst Funct Mat Sustainabil, Teltow, Germany
[12] Lawrence Berkeley Natl Lab, Liquid Sunlight Alliance, Berkeley, CA USA
[13] Inst Univ France, Paris, France
基金
中国国家自然科学基金; 欧洲研究理事会; 日本学术振兴会; 欧盟地平线“2020”;
关键词
ELECTROCHEMICAL REDUCTION; PRODUCT ANALYSIS; CATALYST; COMPLEXES; SYSTEM; WATER;
D O I
10.1038/s41929-023-00992-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Visible-light-driven conversion of CO2 to fuels and valuable compounds has experienced tremendous activity in recent years, aiming at storing solar energy into chemical bonds using CO2 as a renewable feedstock, ultimately at massive scale. Despite these efforts, processes and catalytic systems are still at an early stage of development, with fundamental mechanistic challenges as pre-requisites for device design. In this context, collective efforts currently necessitate the exploration of a variety of approaches. On the other hand, an alignment of practices is required to ensure robustness, precision and accuracy of the results, as well as shared metrics and tools for advancing our understanding of the necessary processes. This Perspective aims to provide guidelines and a framework towards these objectives.
引用
收藏
页码:657 / 665
页数:9
相关论文
共 52 条
[1]   Photocatalytic CO2 Reduction to C2+Products [J].
Albero, Josep ;
Peng, Yong ;
Garcia, Hermenegildo .
ACS CATALYSIS, 2020, 10 (10) :5734-5749
[2]   Best Practices in PEC Water Splitting: How to Reliably Measure Solar-to-Hydrogen Efficiency of Photoelectrodes [J].
Alley, Olivia J. J. ;
Wyatt, Keenan ;
Steiner, Myles A. A. ;
Liu, Guiji ;
Kistler, Tobias ;
Zeng, Guosong ;
Larson, David M. M. ;
Cooper, Jason K. K. ;
Young, James L. ;
Deutsch, Todd G. G. ;
Toma, Francesca M. M. .
FRONTIERS IN ENERGY RESEARCH, 2022, 10
[3]   DETECTION OF REACTION INTERMEDIATES - PHOTOSUBSTITUTION OF (POLYPYRIDINE)RUTHENIUM(II) COMPLEXES USING ONLINE ELECTROSPRAY MASS-SPECTROMETRY [J].
ARAKAWA, R ;
TACHIYASHIKI, S ;
MATSUO, T .
ANALYTICAL CHEMISTRY, 1995, 67 (22) :4133-4138
[4]   Engineering Electro- and Photocatalytic Carbon Materials for CO2 Reduction by Formate Dehydrogenase [J].
Badiani, Vivek M. ;
Casadevall, Carla ;
Miller, Melanie ;
Cobb, Samuel J. ;
Manuel, Rita R. . ;
Pereira, Ines A. C. ;
Reisner, Erwin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (31) :14207-14216
[5]   Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane [J].
Bae, Kyung-Lyul ;
Kim, Jinmo ;
Lim, Chan Kyu ;
Nam, Ki Min ;
Song, Hyunjoon .
NATURE COMMUNICATIONS, 2017, 8
[6]   Recent advances in engineering active sites for photocatalytic CO2reduction [J].
Bo, Yanan ;
Gao, Chao ;
Xiong, Yujie .
NANOSCALE, 2020, 12 (23) :12196-12209
[7]   Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine [J].
Boutin, Etienne ;
Wang, Min ;
Lin, John C. ;
Mesnage, Matthieu ;
Mendoza, Daniela ;
Lassalle-Kaiser, Benedikt ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Robert, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (45) :16172-16176
[8]  
Bracci M., Electron Paramagnetic Resonance, V2020, P1, DOI [DOI 10.1039/9781839162534-00001, 10.1039/9781839162534-00001]
[9]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[10]   Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO2 reduction: from comprehensive chemical shift data to formaldehyde quantification in water [J].
Chatterjee, Tamal ;
Boutin, Etienne ;
Robert, Marc .
DALTON TRANSACTIONS, 2020, 49 (14) :4257-4265