Machine Learning Approaches to the Prediction of Osteoarthritis Phenotypes and Outcomes

被引:8
作者
Arbeeva, Liubov [1 ]
Minnig, Mary C. [2 ]
Yates, Katherine A. [1 ,3 ]
Nelson, Amanda E. [1 ,2 ,3 ]
机构
[1] Univ North Carolina, Thurston Arthrit Res Ctr, 3300 Doc J Thurston Bldg,Campus Box 7280, Chapel Hill, NC 27599 USA
[2] Univ North Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
[3] Univ North Carolina, Dept Med, Chapel Hill, NC 27599 USA
关键词
Osteoarthritis; Machine learning; Artificial intelligence; Precision medicine; KNEE OSTEOARTHRITIS; VOLUME LOSS; MANAGEMENT; ARTHROPLASTY; DISPARITIES; OVERWEIGHT; HIP;
D O I
10.1007/s11926-023-01114-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of ReviewOsteoarthritis (OA) is a complex heterogeneous disease with no effective treatments. Artificial intelligence (AI) and its subfield machine learning (ML) can be applied to data from different sources to (1) assist clinicians and patients in decision making, based on machine-learned evidence, and (2) improve our understanding of pathophysiology and mechanisms underlying OA, providing new insights into disease management and prevention. The purpose of this review is to improve the ability of clinicians and OA researchers to understand the strengths and limitations of AI/ML methods in applications to OA research.Recent FindingsAI/ML can assist clinicians by prediction of OA incidence and progression and by providing tailored personalized treatment. These methods allow using multidimensional multi-source data to understand the nature of OA, to identify different OA phenotypes, and for biomarker discovery.We described the recent implementations of AI/ML in OA research and highlighted potential future directions and associated challenges.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 49 条
[41]  
Selvaraju RR, 2020, INT J COMPUT VISION, V128, P336, DOI [10.1007/s11263-019-01228-7, 10.1109/ICCV.2017.74]
[42]   Racial disparities in knee and hip total joint arthroplasty: an 18-year analysis of national medicare data [J].
Singh, Jasvinder A. ;
Lu, Xin ;
Rosenthal, Gary E. ;
Ibrahim, Said ;
Cram, Peter .
ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (12) :2107-2115
[43]   Linking chondrocyte and synovial transcriptional profile to clinical phenotype in osteoarthritis [J].
Steinberg, Julia ;
Southam, Lorraine ;
Fontalis, Andreas ;
Clark, Matthew J. ;
Jayasuriya, Raveen L. ;
Swift, Diane ;
Shah, Karan M. ;
Brooks, Roger A. ;
McCaskie, Andrew W. ;
Wilkinson, Jeremy Mark ;
Zeggini, Eleftheria .
ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (08) :1070-1074
[44]   Predicting total knee arthroplasty from ultrasonography using machine learning [J].
Tiulpin, Aleksei ;
Saarakkala, Simo ;
Mathiessen, Alexander ;
Hammer, Hilde Berner ;
Furnes, Ove ;
Nordsletten, Lars ;
Englund, Martin ;
Magnusson, Karin .
OSTEOARTHRITIS AND CARTILAGE OPEN, 2022, 4 (04)
[45]   Knee osteoarthritis phenotypes based on synovial fluid immune cells correlate with clinical outcome trajectories [J].
Trajerova, M. ;
Kriegova, E. ;
Mikulkova, Z. ;
Savara, J. ;
Kudelka, M. ;
Gallo, J. .
OSTEOARTHRITIS AND CARTILAGE, 2022, 30 (12) :1583-1592
[46]   Cohort profile: The Applied Public-Private Research enabling OsteoArthritis Clinical Headway (IMI-APPROACH) study: a 2-year, European, cohort study to describe, validate and predict phenotypes of osteoarthritis using clinical, imaging and biochemical markers [J].
van Helvoort, Eefje M. ;
van Spil, Willem E. ;
Jansen, Mylene P. ;
Welsing, Paco M. J. ;
Kloppenburg, Margreet ;
Loef, Marieke ;
Blanco, Francisco J. ;
Haugen, Ida K. ;
Berenbaum, Francis ;
Bacardit, Jaume ;
Ladel, Christoph H. ;
Loughlin, John ;
Bay-Jensen, Anne C. ;
Mobasheri, Ali ;
Larkin, Jonathan ;
Boere, Janneke ;
Weinans, Harrie H. ;
Lalande, Agnes ;
Marijnissen, Anne C. A. ;
Lafeber, Floris P. J. G. .
BMJ OPEN, 2020, 10 (07)
[47]   Racial-Ethnic Differences in Osteoarthritis Pain and Disability: A Meta-Analysis [J].
Vaughn, Ivana A. ;
Terry, Ellen L. ;
Bartley, Emily J. ;
Schaefer, Nancy ;
Fillingim, Roger B. .
JOURNAL OF PAIN, 2019, 20 (06) :629-644
[48]   Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data [J].
Widera, Pawel ;
Welsing, Paco M. J. ;
Ladel, Christoph ;
Loughlin, John ;
Lafeber, Floris P. F. J. ;
Dop, Florence Petit ;
Larkin, Jonathan ;
Weinans, Harrie ;
Mobasheri, Ali ;
Bacardit, Jaume .
SCIENTIFIC REPORTS, 2020, 10 (01)
[49]   Prediction of progression rate and fate of osteoarthritis: Comparison of machine learning algorithms [J].
Yoo, Hyun Jin ;
Jeong, Ho Won ;
Kim, Sung Woon ;
Kim, Myeongju ;
Lee, Jae Ik ;
Lee, Yong Seuk .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2023, 41 (03) :583-590