Machine Learning Approaches to the Prediction of Osteoarthritis Phenotypes and Outcomes

被引:6
作者
Arbeeva, Liubov [1 ]
Minnig, Mary C. [2 ]
Yates, Katherine A. [1 ,3 ]
Nelson, Amanda E. [1 ,2 ,3 ]
机构
[1] Univ North Carolina, Thurston Arthrit Res Ctr, 3300 Doc J Thurston Bldg,Campus Box 7280, Chapel Hill, NC 27599 USA
[2] Univ North Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27599 USA
[3] Univ North Carolina, Dept Med, Chapel Hill, NC 27599 USA
关键词
Osteoarthritis; Machine learning; Artificial intelligence; Precision medicine; KNEE OSTEOARTHRITIS; VOLUME LOSS; MANAGEMENT; ARTHROPLASTY; DISPARITIES; OVERWEIGHT; HIP;
D O I
10.1007/s11926-023-01114-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of ReviewOsteoarthritis (OA) is a complex heterogeneous disease with no effective treatments. Artificial intelligence (AI) and its subfield machine learning (ML) can be applied to data from different sources to (1) assist clinicians and patients in decision making, based on machine-learned evidence, and (2) improve our understanding of pathophysiology and mechanisms underlying OA, providing new insights into disease management and prevention. The purpose of this review is to improve the ability of clinicians and OA researchers to understand the strengths and limitations of AI/ML methods in applications to OA research.Recent FindingsAI/ML can assist clinicians by prediction of OA incidence and progression and by providing tailored personalized treatment. These methods allow using multidimensional multi-source data to understand the nature of OA, to identify different OA phenotypes, and for biomarker discovery.We described the recent implementations of AI/ML in OA research and highlighted potential future directions and associated challenges.
引用
收藏
页码:213 / 225
页数:13
相关论文
共 49 条
[1]   Racial differences in self-reported pain and function among individuals with radiographic hip and knee osteoarthritis: the Johnston County Osteoarthritis Project [J].
Allen, K. D. ;
Helmick, C. G. ;
Schwartz, T. A. ;
DeVellis, R. F. ;
Renner, J. B. ;
Jordan, J. M. .
OSTEOARTHRITIS AND CARTILAGE, 2009, 17 (09) :1132-1136
[2]   Race/Ethnicity and Use of Elective Joint Replacement in the Management of End-Stage Knee/Hip Osteoarthritis A Review of the Literature [J].
Blum, Marissa A. ;
Ibrahim, Said A. .
CLINICS IN GERIATRIC MEDICINE, 2012, 28 (03) :521-+
[3]   Single nucleotide polymorphism genes and mitochondrial DNA haplogroups as biomarkers for early prediction of knee osteoarthritis structural progressors: use of supervised machine learning classifiers [J].
Bonakdari, Hossein ;
Pelletier, Jean-Pierre ;
Blanco, Francisco J. ;
Rego-Perez, Ignacio ;
Duran-Sotuela, Alejandro ;
Aitken, Dawn ;
Jones, Graeme ;
Cicuttini, Flavia ;
Jamshidi, Afshin ;
Abram, Francois ;
Martel-Pelletier, Johanne .
BMC MEDICINE, 2022, 20 (01)
[4]   A Machine Learning Model to Predict Knee Osteoarthritis Cartilage Volume Changes over Time Using Baseline Bone Curvature [J].
Bonakdari, Hossein ;
Pelletier, Jean-Pierre ;
Abram, Francois ;
Martel-Pelletier, Johanne .
BIOMEDICINES, 2022, 10 (06)
[5]   Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative [J].
Bowes, Michael A. ;
Kacena, Katherine ;
Alabas, Oras A. ;
Brett, Alan D. ;
Dube, Bright ;
Bodick, Neil ;
Conaghan, Philip G. .
ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (04) :502-508
[6]  
Chaudhari AS, 2020, J MAGN RESON IMAGING, V51, P768, DOI [10.1002/jmri.26991, 10.1002/jmri.26872]
[7]   Leveraging Big Data to Transform Target Selection and Drug Discovery [J].
Chen, B. ;
Butte, A. J. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2016, 99 (03) :285-297
[8]   Biclustering with heterogeneous variance [J].
Chen, Guanhua ;
Sullivan, Patrick F. ;
Kosorok, Michael R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (30) :12253-12258
[9]  
Cheng Y, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P93
[10]   Unsupervised machine-learning algorithms for the identification of clinical phenotypes in the osteoarthritis initiative database [J].
Demanse, David ;
Saxer, Franziska ;
Lustenberger, Patrick ;
Nikolaus, Philipp ;
Rasin, Ilja ;
Brennan, Damian F. ;
Roubenoff, Ronenn ;
Premji, Sumehra ;
Conaghan, Philip G. ;
Schieker, Matthias .
SEMINARS IN ARTHRITIS AND RHEUMATISM, 2023, 58