Climatic perturbations have led to the prevalence of abiotic stresses in the environment. With this regard, salt stress imposed adversities are one of the major global challenges in the attainment of sustainable devel-opment goals (SDGs) pertaining to crop production. Strategies to cope with salt-induced detrimental impacts through the implementation of gaso-signaling molecules including hydrogen sulfide (H2S) has been gaining immense appraisal in recent years. Since H2S plays pivotal roles in regulating plant physiological processes including seed germination-to-maturation, senescence and defense-induced responses; it has been the cen-ter of attention for many researchers. However, despite its vast potential in the plant system, the role of H2S in inducing salt tolerance mechanisms in staple crops including Triticum aestivum (wheat) still remains ambiguous and needs further investigations to scrutinize the underlying mechanisms. Thus, in the present investigation, we attempt to determine the impact of H2S application on wheat plants exposed to salt stress conditions. The present study revealed that the H2S application synergistically modulated ascorbate-glutathi-one (AsA-GSH) system, osmolyte accumulation, stomatal dynamics, nutrient levels, source-sink and photo-synthesis-related traits in salt stressed wheat plants. The analyzed traits were found correlated with the enhanced growth and yield components, which resulted in improved salt tolerance in H2S-treated plants. Further, recent findings would also aid in elucidating the potential role of H2S as a significant salt stress-alle-viator, and could be implicated as an important crop management strategy to cope up with salt-induced tox-icity, which is quite prevalent in natural field conditions. & COPY; 2023 SAAB. Published by Elsevier B.V. All rights reserved.