AGENT BASED APPROACH FOR TASK OFFLOADING IN EDGE COMPUTING

被引:0
|
作者
Morshedlou, Hossein [1 ]
Shoar, Reza Vafa [2 ]
机构
[1] Shahrood Univ Technol, Dept Comp Engn & Informat Technol, Shahrood, Iran
[2] AmirKabir Univ Technol, Dept Comp Engn, Tehran, Iran
来源
JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY | 2023年 / 9卷 / 02期
关键词
Edge computing; Task offloading; Nash equilibrium; Agent; User satisfaction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to limited resource capacity in the edge network and a high volume of tasks offloaded to edge servers, edge resources may be unable to provide the required capacity for serving all tasks. As a result, some tasks should be moved to the cloud, which may cause additional delays. This may lead to dissatisfaction among users of the transferred tasks. In this paper, a new agent-based approach to decision-making is presented about which tasks should be transferred to the cloud and which ones should be served locally. This approach tries to pair tasks with resources, such that a paired resource is the most preferred resource by the user or task among all available resources. We demonstrate that reaching a Nash Equilibrium point can satisfy the aforementioned condition. A game-theoretic analysis is included to demonstrate that the presented approach increases the average utility of the users and their level of satisfaction.
引用
收藏
页码:154 / 165
页数:12
相关论文
共 50 条
  • [21] Dynamic Task Offloading in Multi-Agent Mobile Edge Computing Networks
    Heydari, Javad
    Ganapathy, Viswanath
    Shah, Mohak
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [22] A hierarchical optimization approach for industrial task offloading and resource allocation in edge computing systems
    Dong, Jiadong
    Chen, Lin
    Zheng, Chunxiang
    Pan, Kai
    Guo, Qinghu
    Wu, Shunfeng
    Wang, Zhaoxiang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 5953 - 5979
  • [23] Task Offloading With Service Migration for Satellite Edge Computing: A Deep Reinforcement Learning Approach
    Wu, Haonan
    Yang, Xiumei
    Bu, Zhiyong
    IEEE ACCESS, 2024, 12 : 25844 - 25856
  • [24] Task offloading of edge computing network based on Lyapunov and deep reinforcement learning
    Qiao, Xudong
    Zhou, Yongxin
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1054 - 1059
  • [25] Joint Optimization for Task Offloading in Edge Computing: An Evolutionary Game Approach
    Dong, Chongwu
    Wen, Wushao
    SENSORS, 2019, 19 (03):
  • [26] Cooperative Task Offloading for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Yang, Jian
    Yuan, Qifeng
    Chen, Shuangwu
    He, Huasen
    Jiang, Xiaofeng
    Tan, Xiaobin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 3205 - 3219
  • [27] Vehicle Edge Computing Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning
    Bo, Jianxiong
    Zhao, Xu
    JOURNAL OF GRID COMPUTING, 2025, 23 (02)
  • [28] Parked Vehicles Task Offloading in Edge Computing
    Nguyen, Khoa
    Drew, Steve
    Huang, Changcheng
    Zhou, Jiayu
    IEEE ACCESS, 2022, 10 : 41592 - 41606
  • [29] A new task offloading algorithm in edge computing
    Zhenjiang Zhang
    Chen Li
    ShengLung Peng
    Xintong Pei
    EURASIP Journal on Wireless Communications and Networking, 2021
  • [30] Task Offloading and Caching for Mobile Edge Computing
    Tang, Chaogang
    Zhu, Chunsheng
    Wei, Xianglin
    Wu, Huaming
    Li, Qing
    Rodrigues, Joel J. P. C.
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 698 - 702