Indistinguishability under adaptive chosen-ciphertext attack secure double-NTRU-based key encapsulation mechanism

被引:2
作者
Seyhan, Kuebra [1 ]
Akleylek, Sedat [1 ,2 ,3 ]
机构
[1] Ondokuz Mayis Univ, Dept Comp Engn, Samsun, Turkiye
[2] Ondokuz Mayis Univ Samsun, Cyber Secur & Informat Technol Res & Dev Ctr, Samsun, Turkiye
[3] Univ Tartu, Chair Secur & Theoret Comp Sci, Tartu, Estonia
关键词
Post-quantum cryptography; Key encapsulation mechanism; NTRU; Lattice-based cryptography;
D O I
10.7717/peerj-cs.1391
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we propose a double-NTRU (D-NTRU)-based key encapsulation mechanism (KEM) for the key agreement requirement of the post-quantum world. The proposed KEM is obtained by combining one-way D-NTRU encryption and Dent's KEM design method. The main contribution of this article is to construct a D-NTRU-based KEM that provides indistinguishability under adaptive chosen-ciphertext attack (IND-CCA2) security. The IND-CCA2 analysis and primal/dual attack resistance of the proposed D-NTRU KEM are examined in detail. A comparison with similar protocols is provided regarding parameters, public/secret keys, and ciphertext sizes. The proposed scheme presents arithmetic simplicity and IND-CCA2 security that does not require any padding mechanism.
引用
收藏
页数:19
相关论文
共 20 条
[1]   Estimate All the {LWE, NTRU} Schemes! [J].
Albrecht, Martin R. ;
Curtis, Benjamin R. ;
Deo, Amit ;
Davidson, Alex ;
Player, Rachel ;
Postlethwaite, Eamonn W. ;
Virdia, Fernando ;
Wunderer, Thomas .
SECURITY AND CRYPTOGRAPHY FOR NETWORKS, SCN 2018, 2018, 11035 :351-367
[2]  
Bogdanov D., 2005, MTAT 07 006 RES SEM
[3]  
Chen C, 2022, NTRU NIST PQC STANDA
[4]  
Coglianese M, 2005, LECT NOTES COMPUT SC, V3797, P232
[5]  
Dent AW, 2003, LECT NOTES COMPUT SC, V2898, P133
[6]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654
[7]   Efficient Nyberg-Rueppel type of NTRU digital signature algorithm [J].
Elverdi, Ferdi ;
Akleylek, Sedat ;
Kirlar, Baris Bulent .
TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (01) :59-70
[8]  
Hoffstein J., 1998, Algorithmic Number Theory. Third International Symposium, ANTS-III. Proceedings, P267, DOI 10.1007/BFb0054868
[9]  
Howgrave-Graham N., 2003, Report 2003/172
[10]   ETRU: NTRU over the Eisenstein integers [J].
Jarvis, Katherine ;
Nevins, Monica .
DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (01) :219-242