Semantic similarity metrics for image registration

被引:8
作者
Czolbe, Steffen [1 ]
Pegios, Paraskevas [2 ]
Krause, Oswin [1 ]
Feragen, Aasa [2 ]
机构
[1] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[2] Tech Univ Denmark, DTU Compute, Kongens Lyngby, Denmark
基金
新加坡国家研究基金会;
关键词
Image registration; Deep learning; Representation learning; LEARNING FRAMEWORK;
D O I
10.1016/j.media.2023.102830
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image registration aims to find geometric transformations that align images. Most algorithmic and deep learning-based methods solve the registration problem by minimizing a loss function, consisting of a similarity metric comparing the aligned images, and a regularization term ensuring smoothness of the transformation. Existing similarity metrics like Euclidean Distance or Normalized Cross-Correlation focus on aligning pixel intensity values or correlations, giving difficulties with low intensity contrast, noise, and ambiguous matching. We propose a semantic similarity metric for image registration, focusing on aligning image areas based on semantic correspondence instead. Our approach learns dataset-specific features that drive the optimization of a learning-based registration model. We train both an unsupervised approach extracting features with an auto -encoder, and a semi-supervised approach using supplemental segmentation data. We validate the semantic similarity metric using both deep-learning-based and algorithmic image registration methods. Compared to existing methods across four different image modalities and applications, the method achieves consistently high registration accuracy and smooth transformation fields.
引用
收藏
页数:16
相关论文
共 86 条
[1]   The Medical Segmentation Decathlon [J].
Antonelli, Michela ;
Reinke, Annika ;
Bakas, Spyridon ;
Farahani, Keyvan ;
Kopp-Schneider, Annette ;
Landman, Bennett A. ;
Litjens, Geert ;
Menze, Bjoern ;
Ronneberger, Olaf ;
Summers, Ronald M. ;
van Ginneken, Bram ;
Bilello, Michel ;
Bilic, Patrick ;
Christ, Patrick F. ;
Do, Richard K. G. ;
Gollub, Marc J. ;
Heckers, Stephan H. ;
Huisman, Henkjan ;
Jarnagin, William R. ;
McHugo, Maureen K. ;
Napel, Sandy ;
Pernicka, Jennifer S. Golia ;
Rhode, Kawal ;
Tobon-Gomez, Catalina ;
Vorontsov, Eugene ;
Meakin, James A. ;
Ourselin, Sebastien ;
Wiesenfarth, Manuel ;
Arbelaez, Pablo ;
Bae, Byeonguk ;
Chen, Sihong ;
Daza, Laura ;
Feng, Jianjiang ;
He, Baochun ;
Isensee, Fabian ;
Ji, Yuanfeng ;
Jia, Fucang ;
Kim, Ildoo ;
Maier-Hein, Klaus ;
Merhof, Dorit ;
Pai, Akshay ;
Park, Beomhee ;
Perslev, Mathias ;
Rezaiifar, Ramin ;
Rippel, Oliver ;
Sarasua, Ignacio ;
Shen, Wei ;
Son, Jaemin ;
Wachinger, Christian ;
Wang, Liansheng .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]  
Avants BB., 2009, Insight j, V2, P1, DOI [DOI 10.54294/UVNHIN, 10.54294/uvnhin]
[4]   Multivariate Analysis of Structural and Diffusion Imaging in Traumatic Brain Injury [J].
Avants, Brian ;
Duda, Jeffrey T. ;
Kim, Junghoon ;
Zhang, Hui ;
Pluta, John ;
Gee, James C. ;
Whyte, John .
ACADEMIC RADIOLOGY, 2008, 15 (11) :1360-1375
[5]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[6]   MULTIRESOLUTION ELASTIC MATCHING [J].
BAJCSY, R ;
KOVACIC, S .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 46 (01) :1-21
[7]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[8]   Computing large deformation metric mappings via geodesic flows of diffeomorphisms [J].
Beg, MF ;
Miller, MI ;
Trouvé, A ;
Younes, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) :139-157
[9]   Weakly-supervised learning of multi-modal features for regularised iterative descent in 3D image registration [J].
Blendowski, Max ;
Hansen, Lasse ;
Heinrich, Mattias P. .
MEDICAL IMAGE ANALYSIS, 2021, 67
[10]   A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive [J].
Castillo, Richard ;
Castillo, Edward ;
Fuentes, David ;
Ahmad, Moiz ;
Wood, Abbie M. ;
Ludwig, Michelle S. ;
Guerrero, Thomas .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (09) :2861-2877