Machine learning in rare disease

被引:40
作者
Banerjee, Jineta [1 ]
Taroni, Jaclyn N. [2 ]
Allaway, Robert J. [1 ]
Prasad, Deepashree Venkatesh [2 ]
Guinney, Justin [1 ]
Greene, Casey [3 ]
机构
[1] Sage Bionetworks, Seattle, WA USA
[2] Alexs Lemonade Stand Fdn, Childhood Canc Data Lab, Philadelphia, PA USA
[3] Univ Colorado, Sch Med, Dept Biomed Informat, Aurora, CO 80045 USA
关键词
GENE; PHENOTYPES; SELECTION; FACE;
D O I
10.1038/s41592-023-01886-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput profiling methods (such as genomics or imaging) have accelerated basic research and made deep molecular characterization of patient samples routine. These approaches provide a rich portrait of genes, molecular pathways and cell types involved in disease phenotypes. Machine learning (ML) can be a useful tool for extracting disease-relevant patterns from high-dimensional datasets. However, depending upon the complexity of the biological question, machine learning often requires many samples to identify recurrent and biologically meaningful patterns. Rare diseases are inherently limited in clinical cases, leading to few samples to study. In this Perspective, we outline the challenges and emerging solutions for using ML for small sample sets, specifically in rare diseases. Advances in ML methods for rare diseases are likely to be informative for applications beyond rare diseases for which few samples exist with high-dimensional data. We propose that the method community prioritize the development of ML techniques for rare disease research. This Perspective discusses how machine learning can help in studying rare diseases using various emerging approaches.
引用
收藏
页码:803 / 814
页数:12
相关论文
共 86 条
[51]   Unsupervised Analysis of Transcriptomic Profiles Reveals Six Glioma Subtypes [J].
Li, Aiguo ;
Walling, Jennifer ;
Ahn, Susie ;
Kotliarov, Yuri ;
Su, Qin ;
Quezado, Martha ;
Oberholtzer, J. Carl ;
Park, John ;
Zenklusen, Jean C. ;
Fine, Howard A. .
CANCER RESEARCH, 2009, 69 (05) :2091-2099
[52]  
LI X, 2019, BMC MED INFORM DECIS, V19
[53]   Explainable machine-learning predictions for the prevention of hypoxaemia during surgery [J].
Lundberg, Scott M. ;
Nair, Bala ;
Vavilala, Monica S. ;
Horibe, Mayumi ;
Eisses, Michael J. ;
Adams, Trevor ;
Liston, David E. ;
Low, Daniel King-Wai ;
Newman, Shu-Fang ;
Kim, Jerry ;
Lee, Su-In .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (10) :749-760
[54]   Pathway-level information extractor (PLIER) for gene expression data [J].
Mao, Weiguang ;
Zaslavsky, Elena ;
Hartmann, Boris M. ;
Sealfon, Stuart C. ;
Chikina, Maria .
NATURE METHODS, 2019, 16 (07) :607-+
[55]   WikiPathways: connecting communities [J].
Martens, Marvin ;
Ammar, Ammar ;
Riutta, Anders ;
Waagmeester, Andra ;
Slenter, Denise N. ;
Hanspers, Kristina ;
Miller, Ryan A. ;
Digles, Daniela ;
Lopes, Elisson N. ;
Ehrhart, Friederike ;
Dupuis, Lauren J. ;
Winckers, Laurent A. ;
Coort, Susan L. ;
Willighagen, Egon L. ;
Evelo, Chris T. ;
Pico, Alexander R. ;
Kutmon, Martina .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D613-D621
[56]  
McInnes L, 2020, Arxiv, DOI [arXiv:1802.03426, DOI 10.48550/ARXIV.1802.03426]
[57]  
Mikolov T., 2013, P WORKSH ICLR
[58]   Original Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug repurposing hypotheses [J].
Moon, Changsung ;
Jin, Chunming ;
Dong, Xialan ;
Abrar, Saad ;
Zheng, Weifan ;
Chirkova, Rada Y. ;
Tropsha, Alexander .
JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 119
[59]  
More A., 2016, PREPRINT
[60]   The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species [J].
Mungall, Christopher J. ;
McMurry, Julie A. ;
Koehler, Sebastian ;
Balhoff, James P. ;
Borromeo, Charles ;
Brush, Matthew ;
Carbon, Seth ;
Conlin, Tom ;
Dunn, Nathan ;
Engelstad, Mark ;
Foster, Erin ;
Gourdine, J. P. ;
Jacobsen, Julius O. B. ;
Keith, Dan ;
Laraway, Bryan ;
Lewis, Suzanna E. ;
NguyenXuan, Jeremy ;
Shefchek, Kent ;
Vasilevsky, Nicole ;
Yuan, Zhou ;
Washington, Nicole ;
Hochheiser, Harry ;
Groza, Tudor ;
Smedley, Damian ;
Robinson, Peter N. ;
Haendel, Melissa A. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D712-D722