Machine learning for the prediction of converged energies from ab initio nuclear structure calculations

被引:9
|
作者
Knoell, Marco [1 ]
Wolfgruber, Tobias [1 ]
Agel, Marc L. [1 ]
Wenz, Cedric [1 ]
Roth, Robert [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, Fachbereich Phys, Schlossgartenstr 2, D-64289 Darmstadt, Germany
[2] Helmholtz Forsch Akad Hessen FAIR, GSI Helmholtzzentrum, D-64289 Darmstadt, Germany
关键词
D O I
10.1016/j.physletb.2023.137781
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The prediction of nuclear observables beyond the finite model spaces that are accessible through modern ab initio methods, such as the no-core shell model, poses a challenging task in nuclear structure theory. It requires reliable tools for the extrapolation of observables to infinite many-body Hilbert spaces along with reliable uncertainty estimates. In this work we present a universal machine learning tool capable of capturing observable-specific convergence patterns independent of nucleus and interaction. We show that, once trained on few-body systems, artificial neural networks can produce accurate predictions for a broad range of light nuclei. In particular, we discuss neural-network predictions of ground-state energies from no-core shell model calculations for 6Li, 12C and 16O based on training data for 2H, 3H and 4He and compare them to classical extrapolations.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Ab initio calculations and vibrational structure of sulfanilamide
    Topacli, C
    Topacli, A
    JOURNAL OF MOLECULAR STRUCTURE, 2003, 644 (1-3) : 145 - 150
  • [42] Improving the efficiency of ab initio electronic-structure calculations by deep learning
    Li, He
    Xu, Yong
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (07): : 418 - 419
  • [43] Ab initio polypeptide structure prediction
    Philippe Derreumaux
    Theoretical Chemistry Accounts, 2000, 104 : 1 - 6
  • [44] Ab initio protein structure prediction
    Hardin, C
    Pogorelov, TV
    Luthey-Schulten, Z
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (02) : 176 - 181
  • [45] Ab initio polypeptide structure prediction
    Derreumaux, P
    THEORETICAL CHEMISTRY ACCOUNTS, 2000, 104 (01) : 1 - 6
  • [46] Towards ab-initio nuclear structure calculations beyond the p-shell
    Roth, Robert
    NUCLEAR PHYSICS A, 2008, 805 : 416C - 423C
  • [47] Ab Initio Nuclear Structure Theory: From Few to Many
    Robert Roth
    Angelo Calci
    Joachim Langhammer
    Sven Binder
    Few-Body Systems, 2014, 55 : 659 - 665
  • [48] Ab Initio Nuclear Structure Theory: From Few to Many
    Roth, Robert
    Calci, Angelo
    Langhammer, Joachim
    Binder, Sven
    FEW-BODY SYSTEMS, 2014, 55 (8-10) : 659 - 665
  • [49] ELECTRONIC STRUCTURE OF CARBON SUBOXIDE FROM ESCA AND AB INITIO CALCULATIONS
    GELIUS, U
    ALLAN, CJ
    ALLISON, DA
    SIEGBAN, H
    SIEGBAHN, K
    CHEMICAL PHYSICS LETTERS, 1971, 11 (02) : 224 - +
  • [50] Structure of diamond(100) stepped surfaces from ab initio calculations
    Alfonso, D
    Drabold, D
    Ulloa, S
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (06) : 641 - 647