Machine learning for the prediction of converged energies from ab initio nuclear structure calculations

被引:9
|
作者
Knoell, Marco [1 ]
Wolfgruber, Tobias [1 ]
Agel, Marc L. [1 ]
Wenz, Cedric [1 ]
Roth, Robert [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, Fachbereich Phys, Schlossgartenstr 2, D-64289 Darmstadt, Germany
[2] Helmholtz Forsch Akad Hessen FAIR, GSI Helmholtzzentrum, D-64289 Darmstadt, Germany
关键词
D O I
10.1016/j.physletb.2023.137781
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The prediction of nuclear observables beyond the finite model spaces that are accessible through modern ab initio methods, such as the no-core shell model, poses a challenging task in nuclear structure theory. It requires reliable tools for the extrapolation of observables to infinite many-body Hilbert spaces along with reliable uncertainty estimates. In this work we present a universal machine learning tool capable of capturing observable-specific convergence patterns independent of nucleus and interaction. We show that, once trained on few-body systems, artificial neural networks can produce accurate predictions for a broad range of light nuclei. In particular, we discuss neural-network predictions of ground-state energies from no-core shell model calculations for 6Li, 12C and 16O based on training data for 2H, 3H and 4He and compare them to classical extrapolations.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Converged ab initio calculations of heavy nuclei
    Miyagi, T.
    Stroberg, S. R.
    Navratil, P.
    Hebeler, K.
    Holt, J. D.
    PHYSICAL REVIEW C, 2022, 105 (01)
  • [2] Phase diagram of uranium from ab initio calculations and machine learning
    Kruglov, Ivan A.
    Yanilkin, Alexey
    Oganov, Artem R.
    Korotaev, Pavel
    PHYSICAL REVIEW B, 2019, 100 (17)
  • [3] Ring strain energies from ab initio calculations
    Dudev, T
    Lim, C
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (18) : 4450 - 4458
  • [4] Accelerating the prediction of stacking fault energy by combining ab initio calculations and machine learning
    Linda, Albert
    Akhtar, Faiz
    Pathak, Shaswat
    Bhowmick, Somnath
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [5] Ab Initio Nuclear Structure Calculations of Light Nuclei
    Maris, Pieter
    IUPAP C20 CONFERENCE ON COMPUTATIONAL PHYSICS (CCP 2011), 2012, 402
  • [6] Combining ab initio and machine learning method to improve prediction performance of diatomic vibrational energies
    Fu, Jia
    Wan, Zhitao
    Yang, Zhangzhang
    Liu, Li
    Fan, Qunchao
    Xie, Feng
    Zhang, Yi
    Ma, Jie
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2022, 122 (18)
  • [7] Tensor-decomposition techniques for ab initio nuclear structure calculations: From chiral nuclear potentials to ground-state energies
    Tichai, A.
    Schutski, R.
    Scuseria, G. E.
    Duguet, T.
    PHYSICAL REVIEW C, 2019, 99 (03)
  • [8] Hydriding and dehydriding energies of PuHx from ab initio calculations
    Yang, Yu
    Zhang, Ping
    PHYSICS LETTERS A, 2015, 379 (28-29) : 1649 - 1653
  • [9] Uncertainties in ab initio nuclear structure calculations with chiral interactions
    Maris, P.
    Le, H.
    Nogga, A.
    Roth, R.
    Vary, J. P.
    FRONTIERS IN PHYSICS, 2023, 11
  • [10] Ab initio nuclear structure calculations with transformed realistic interactions
    Roth, R.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 156 (1): : 191 - 198