Dual generative adversarial networks combining conditional assistance and feature enhancement for imbalanced fault diagnosis

被引:3
|
作者
Li, Ranran [1 ]
Li, Shunming [1 ,3 ,5 ]
Xu, Kun [1 ,2 ,4 ]
Zeng, Mengjie [1 ]
Li, Xianglian [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] Nantong Inst Technol, Sch Automot Engn, Nantong, Peoples R China
[4] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2024年 / 23卷 / 01期
基金
中国国家自然科学基金;
关键词
Dual generators; coral distance; self-attention module; adversarial networks; fault diagnosis; NEURAL-NETWORK; ADAPTATION; MACHINERY; MODEL;
D O I
10.1177/14759217231165223
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dataset in the application scenario of existing fault diagnosis methods is often balanced, while the data collected under actual working conditions are often imbalanced. Directly applying existing fault diagnosis methods to this scenario will lead to poor diagnosis effect. In view of the above problems, we proposed a method called dual generative adversarial networks (DGANs) combining conditional assistance and feature enhancement. The method uses data augmentation as a basic strategy to supplement imbalanced datasets by generating high-quality data. Firstly, a new generator is designed to build the basic framework by sharing the dual-branch deconvolutional neural networks, and combining the label auxiliary information and the coral distance loss function to ensure the diversity of generated samples. Secondly, a new discriminator was designed, which is based on deep convolutional neural networks and embedded with auxiliary classifiers, further expanding the function of the discriminator. Thirdly, the self-attention module is introduced into both the generator and the discriminator to enhance deep feature learning and improve the quality of generated samples; finally, the proposed method is experimentally validated on datasets of two different testbeds. The experimental results show that the proposed method can generate fake samples with rich diversity and high quality, using these samples to supplement the imbalanced dataset, the effect of imbalanced fault diagnosis has been substantially improved. This method can be used to solve the problem of fault diagnosis in the case of sample imbalance, which often exists in actual working conditions.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 50 条
  • [31] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Yuntao Dai
    Lizhang Peng
    Zhaobo Juan
    Yuan Liang
    Jihong Shen
    Shujuan Wang
    Sichao Tan
    Hongyan Yu
    Mingze Sun
    Journal of Electrical Engineering & Technology, 2023, 18 : 3237 - 3252
  • [32] An Intelligent Fault Diagnosis Method for Imbalanced Nuclear Power Plant Data Based on Generative Adversarial Networks
    Dai, Yuntao
    Peng, Lizhang
    Juan, Zhaobo
    Liang, Yuan
    Shen, Jihong
    Wang, Shujuan
    Tan, Sichao
    Yu, Hongyan
    Sun, Mingze
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (04) : 3237 - 3252
  • [33] Generative Adversarial Networks for Gearbox of Wind Turbine With Unbalanced Data Sets in Fault Diagnosis
    Su, Yuanhao
    Meng, Liang
    Kong, Xiaojia
    Xu, Tongle
    Lan, Xiaosheng
    Li, Yunfeng
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 13285 - 13298
  • [34] Fault Diagnosis of Harmonic Drive With Imbalanced Data Using Generative Adversarial Network
    Yang, Guo
    Zhong, Yong
    Yang, Lie
    Tao, Hui
    Li, Jianying
    Du, Ruxu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [35] Novel imbalanced fault diagnosis method based on generative adversarial networks with balancing serial CNN and Transformer (BCTGAN)
    Chen, Hualin
    Wei, Jianan
    Huang, Haisong
    Wen, Long
    Yuan, Yage
    Wu, Jinxing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [36] An Imbalanced Fault Diagnosis Method for Rolling Bearing Based on Semi-Supervised Conditional Generative Adversarial Network With Spectral Normalization
    Xu, Minqiu
    Wang, Youqing
    IEEE ACCESS, 2021, 9 (09): : 27736 - 27747
  • [37] Generalization of Deep Neural Networks for Imbalanced Fault Classification of Machinery Using Generative Adversarial Networks
    Wang, Jinrui
    Li, Shunming
    Han, Baokun
    An, Zenghui
    Bao, Huaiqian
    Ji, Shanshan
    IEEE ACCESS, 2019, 7 : 111168 - 111180
  • [38] Data Fusion Generative Adversarial Network for Multi-Class Imbalanced Fault Diagnosis of Rotating Machinery
    Liu, Qianjun
    Ma, Guijun
    Cheng, Cheng
    IEEE ACCESS, 2020, 8 : 70111 - 70124
  • [39] Generative adversarial networks for data augmentation in machine fault diagnosis
    Shao, Siyu
    Wang, Pu
    Yan, Ruqiang
    COMPUTERS IN INDUSTRY, 2019, 106 : 85 - 93
  • [40] Adaptive variational autoencoding generative adversarial networks for rolling bearing fault diagnosis
    Wang, Xin
    Jiang, Hongkai
    Wu, Zhenghong
    Yang, Qiao
    ADVANCED ENGINEERING INFORMATICS, 2023, 56