Dual generative adversarial networks combining conditional assistance and feature enhancement for imbalanced fault diagnosis

被引:3
|
作者
Li, Ranran [1 ]
Li, Shunming [1 ,3 ,5 ]
Xu, Kun [1 ,2 ,4 ]
Zeng, Mengjie [1 ]
Li, Xianglian [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] Nantong Inst Technol, Sch Automot Engn, Nantong, Peoples R China
[4] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2024年 / 23卷 / 01期
基金
中国国家自然科学基金;
关键词
Dual generators; coral distance; self-attention module; adversarial networks; fault diagnosis; NEURAL-NETWORK; ADAPTATION; MACHINERY; MODEL;
D O I
10.1177/14759217231165223
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dataset in the application scenario of existing fault diagnosis methods is often balanced, while the data collected under actual working conditions are often imbalanced. Directly applying existing fault diagnosis methods to this scenario will lead to poor diagnosis effect. In view of the above problems, we proposed a method called dual generative adversarial networks (DGANs) combining conditional assistance and feature enhancement. The method uses data augmentation as a basic strategy to supplement imbalanced datasets by generating high-quality data. Firstly, a new generator is designed to build the basic framework by sharing the dual-branch deconvolutional neural networks, and combining the label auxiliary information and the coral distance loss function to ensure the diversity of generated samples. Secondly, a new discriminator was designed, which is based on deep convolutional neural networks and embedded with auxiliary classifiers, further expanding the function of the discriminator. Thirdly, the self-attention module is introduced into both the generator and the discriminator to enhance deep feature learning and improve the quality of generated samples; finally, the proposed method is experimentally validated on datasets of two different testbeds. The experimental results show that the proposed method can generate fake samples with rich diversity and high quality, using these samples to supplement the imbalanced dataset, the effect of imbalanced fault diagnosis has been substantially improved. This method can be used to solve the problem of fault diagnosis in the case of sample imbalance, which often exists in actual working conditions.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 50 条
  • [11] Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data
    Li, Qi
    Chen, Liang
    Shen, Changqing
    Yang, Bingru
    Zhu, Zhongkui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2019, 30 (11)
  • [12] Enhanced generative adversarial networks for bearing imbalanced fault diagnosis of rotating machinery
    Hou, Yandong
    Ma, Jiulong
    Wang, Jinjin
    Li, Tianzhi
    Chen, Zhengquan
    APPLIED INTELLIGENCE, 2023, 53 (21) : 25201 - 25215
  • [13] Enhanced generative adversarial networks for bearing imbalanced fault diagnosis of rotating machinery
    Yandong Hou
    Jiulong Ma
    Jinjin Wang
    Tianzhi Li
    Zhengquan Chen
    Applied Intelligence, 2023, 53 : 25201 - 25215
  • [14] A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
    Liu, Yunpeng
    Jiang, Hongkai
    Wang, Yanfeng
    Wu, Zhenghong
    Liu, Shaowei
    MEASUREMENT, 2022, 192
  • [15] Fault diagnosis based on conditional generative adversarial networks in nuclear power plants
    Qian, Gensheng
    Liu, Jingquan
    ANNALS OF NUCLEAR ENERGY, 2022, 176
  • [16] A Novel Method for Imbalanced Fault Diagnosis of Rotating Machinery Based on Generative Adversarial Networks
    Li, Zhenxiang
    Zheng, Taisheng
    Wang, Yang
    Cao, Zhi
    Guo, Zhiqi
    Fu, Hongyong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [17] Imbalanced Learning for Fault Diagnosis Problem of Rotating Machinery Based on Generative Adversarial Networks
    Xie, Yuan
    Zhang, Tao
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 6017 - 6022
  • [18] Auxiliary generative mutual adversarial networks for class-imbalanced fault diagnosis under small samples
    Li, Ranran
    Li, Shunming
    Xu, Kun
    Zeng, Mengjie
    Li, Xianglian
    Gu, Jianfeng
    Chen, Yong
    CHINESE JOURNAL OF AERONAUTICS, 2023, 36 (09) : 464 - 478
  • [19] Application of Generative Adversarial Networks for Intelligent Fault Diagnosis
    Cao, Sican
    Wen, Long
    Li, Xinyu
    Gao, Liang
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2018, : 711 - 715
  • [20] Fault diagnosis method based on triple generative adversarial nets for imbalanced data
    Su, Changwei
    Wang, Xueren
    Liu, Ruijie
    Guo, Ziyi
    Sang, Shengtian
    Yu, Shuang
    Zhang, Haifeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)