Dynamic Feature Fusion for Visual Object Detection and Segmentation

被引:0
|
作者
Hu, Yu-Ming [1 ]
Xie, Jia-Jin [1 ]
Shuai, Hong-Han [2 ]
Huang, Ching-Chun [3 ]
Chou, I. -Fan [4 ]
Cheng, Wen-Huang [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Elect, Hsinchu, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Dept Comp Sci, Hsinchu, Taiwan
[4] Chunghwa Telecom Labs, Taoyuan, Taiwan
来源
2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE | 2023年
关键词
Deep neural networks; Feature fusion; Object detection; Image segmentation;
D O I
10.1109/ICCE56470.2023.10043439
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Feature fusion is a key process of integrating multiple features in deep neural networks (DNN). The mainstream method in the literature is based on the Feature Pyramid Network (FPN), where the learned parameters about feature fusion is fixed after the training process. That is, how the multiple features will be fused is independent from the embedded characteristics of the input data, making the feature fusion process less flexible especially for the object categories less seen in training data. Therefore, this paper proposes a novel feature fusion mechanism, called dynamic feature fusion. With this mechanism, a model can automatically learn and select the appropriate way of feature fusion to provide prediction heads with more effective and flexible input features depending on the characteristics of input data.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] OMS-SLAM: dynamic scene visual SLAM based on object detection with multiple geometric feature constraints and statistical threshold segmentation
    Tang, Jialiang
    Feng, Zhengyong
    Liao, Peng
    Chen, Liheng
    Xiao, Xiaomei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [32] FULLY CONVOLUTIONAL NETWORK WITH DENSELY FEATURE FUSION MODELS FOR OBJECT DETECTION
    Huang, Shouzhi
    Li, Xiaoyu
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Men, Aidong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [33] Camouflage Object Detection Based on Feature Fusion and Edge Detection
    Ding, Cheng
    Bai, Xueqiong
    Lv, Yong
    Liu, Yang
    Niu, Chunhui
    Liu, Xin
    ACTA PHOTONICA SINICA, 2024, 53 (08)
  • [34] FSFM: A Feature Square Tower Fusion Module for Multimodal Object Detection
    Liu, Xiaomin
    Zhu, Chen
    Yang, Chunyu
    Zhou, Linna
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] BFF R-CNN: Balanced Feature Fusion for Object Detection
    Liu, Hongzhe
    Wang, Ningwei
    Li, Xuewei
    Xu, Cheng
    Li, Yaze
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1472 - 1480
  • [36] Efficient Multi-Object Recognition Using GMM Segmentation Feature Fusion Approach
    Naseer, Aysha
    Alzahrani, Hamdan A.
    Almujally, Nouf Abdullah
    AlNowaiser, Khaled
    Al Mudawi, Naif
    Algarni, Asaad
    Park, Jeongmin
    IEEE ACCESS, 2024, 12 : 37165 - 37178
  • [37] Dual Attention Feature Fusion for Visible-Infrared Object Detection
    Hu, Yuxuan
    Shi, Limin
    Yao, Libo
    Weng, Lubin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII, 2023, 14260 : 53 - 65
  • [38] Revisiting Feature Fusion for RGB-T Salient Object Detection
    Zhang, Qiang
    Xiao, Tonglin
    Huang, Nianchang
    Zhang, Dingwen
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 1804 - 1818
  • [39] Progressive Feature Fusion and Refinement Network for Substation Rotating Object Detection
    Qu, Luyao
    Zhu, Xinshan
    Li, Bin
    Guo, Zhimin
    Liu, Hao
    Mao, Wandeng
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 2356 - 2360
  • [40] Lightweight Feature Fusion Network for Object Detection in Aerial Photography Images
    Fan Qiangqiang
    Shi Zaifeng
    Kong Fanning
    Li Shaoxiong
    Xiao Jun
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)