Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features

被引:132
|
作者
Zhao, Zeni [1 ]
Yun, Sining [1 ,2 ]
Jia, Lingyun [1 ]
Guo, Jiaxin [1 ]
Meng, Yao [1 ]
He, Ning [3 ]
Li, Xuejuan [4 ]
Shi, Jiarong [4 ]
Yang, Liu [5 ]
机构
[1] Xian Univ Architecture & Technol, Sch Mat Sci & Engn, Funct Mat Lab FML, Xian 710055, Shaanxi, Peoples R China
[2] Qinghai Bldg & Mat Res Acad Co Ltd, Key Lab Plateau Bldg & Ecocommunity Qinghai, Xining 810000, Qinghai, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Shaanxi, Peoples R China
[4] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
[5] Xian Univ Architecture & Technol, Coll Architecture, Xian 710055, Shaanxi, Peoples R China
基金
国家重点研发计划;
关键词
Short-term forecasting; Wind power; Machine learning; Variational mode decomposition; Convolutional neural network; Gated recurrent unit; ENSEMBLE METHOD; NEURAL-NETWORK; PREDICTION; DECOMPOSITION;
D O I
10.1016/j.engappai.2023.105982
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate and reliable short-term forecasting of wind power is vital for balancing energy and integrating wind power into a grid. A novel hybrid deep learning model is designed in this study to increase the prediction accuracy of short-term wind power forecasting on a wind farm in Jiang County, Shanxi, China. The proposed hybrid deep learning model comprises variable mode decomposition (VMD), convolutional neural network (CNN), and gated recurrent unit (GRU). VMD substantially reduces the volatility of wind speed sequences. CNN automatically extracts complex spatial features from wind power data, and GRU can directly extract temporal features from historical input data. The forecasting accuracy of the combined VMD-CNN-GRU model is higher than that of any single model for wind power. The study used data obtained in 15 min intervals from the wind farm to determine the effectiveness of the proposed model against other advanced models. Compared with the other deep learning models, VMD-CNN-GRU is the best at short-term forecasting, with an RMSE of 1.5651, MAE of 0.8161, MAPE of 11.62%, and R2 of 0.9964. This method is valuable for practical applications and can be used to maintain safe wind farm operations in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Multistage spatio-temporal attention network based on NODE for short-term PV power forecasting
    Huang, Songtao
    Zhou, Qingguo
    Shen, Jun
    Zhou, Heng
    Yong, Binbin
    ENERGY, 2024, 290
  • [32] Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting
    Filik, Tansu
    ENERGIES, 2016, 9 (03):
  • [33] Short-term Wind Speed Prediction Based on CNN_GRU Model
    Huai Nana
    Dong Lei
    Wang Lijie
    Hao Ying
    Dai Zhongjian
    Wang Bo
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 2243 - 2247
  • [34] Short-term wind power forecasting based on SSA-VMD-LSTM
    Gao, Xiaozhi
    Guo, Wang
    Mei, Chunxiao
    Sha, Jitong
    Guo, Yingjun
    Sun, Hexu
    ENERGY REPORTS, 2023, 9 : 335 - 344
  • [35] SHORT-TERM PV POWER FORECASTING BASED ON IMPROVED VMD AND SNS-ATTENTION-GRU
    Li H.
    Gao B.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (08): : 292 - 300
  • [36] A novel hybrid model for short-term wind power forecasting
    Du, Pei
    Wang, Jianzhou
    Yang, Wendong
    Niu, Tong
    APPLIED SOFT COMPUTING, 2019, 80 : 93 - 106
  • [37] Spatio-temporal analysis and modeling of short-term wind power forecast errors
    Tastu, Julija
    Pinson, Pierre
    Kotwa, Ewelina
    Madsen, Henrik
    Nielsen, Henrik Aa.
    WIND ENERGY, 2011, 14 (01) : 43 - 60
  • [38] Optimal Graph Structure Based Short-Term Solar PV Power Forecasting Method Considering Surrounding Spatio-Temporal Correlations
    Zhang, Meng
    Zhen, Zhao
    Liu, Nian
    Zhao, Hongjun
    Sun, Yiqian
    Feng, Changyou
    Wang, Fei
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (01) : 345 - 357
  • [39] Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN
    Li, Qingyang
    Wang, Guosong
    Wu, Xinrong
    Gao, Zhigang
    Dan, Bo
    ENERGY, 2024, 299
  • [40] VMD-CAT: A hybrid model for short-term wind power prediction
    Zheng, Huan
    Hu, Zhenda
    Wang, Xuguang
    Ni, Junhong
    Cui, Mengqi
    ENERGY REPORTS, 2023, 9 : 199 - 211