Hybrid VMD-CNN-GRU-based model for short-term forecasting of wind power considering spatio-temporal features

被引:198
作者
Zhao, Zeni [1 ]
Yun, Sining [1 ,2 ]
Jia, Lingyun [1 ]
Guo, Jiaxin [1 ]
Meng, Yao [1 ]
He, Ning [3 ]
Li, Xuejuan [4 ]
Shi, Jiarong [4 ]
Yang, Liu [5 ]
机构
[1] Xian Univ Architecture & Technol, Sch Mat Sci & Engn, Funct Mat Lab FML, Xian 710055, Shaanxi, Peoples R China
[2] Qinghai Bldg & Mat Res Acad Co Ltd, Key Lab Plateau Bldg & Ecocommunity Qinghai, Xining 810000, Qinghai, Peoples R China
[3] Xian Univ Architecture & Technol, Sch Mech & Elect Engn, Xian 710055, Shaanxi, Peoples R China
[4] Xian Univ Architecture & Technol, Sch Sci, Xian 710055, Shaanxi, Peoples R China
[5] Xian Univ Architecture & Technol, Coll Architecture, Xian 710055, Shaanxi, Peoples R China
基金
国家重点研发计划;
关键词
Short-term forecasting; Wind power; Machine learning; Variational mode decomposition; Convolutional neural network; Gated recurrent unit; ENSEMBLE METHOD; NEURAL-NETWORK; PREDICTION; DECOMPOSITION;
D O I
10.1016/j.engappai.2023.105982
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate and reliable short-term forecasting of wind power is vital for balancing energy and integrating wind power into a grid. A novel hybrid deep learning model is designed in this study to increase the prediction accuracy of short-term wind power forecasting on a wind farm in Jiang County, Shanxi, China. The proposed hybrid deep learning model comprises variable mode decomposition (VMD), convolutional neural network (CNN), and gated recurrent unit (GRU). VMD substantially reduces the volatility of wind speed sequences. CNN automatically extracts complex spatial features from wind power data, and GRU can directly extract temporal features from historical input data. The forecasting accuracy of the combined VMD-CNN-GRU model is higher than that of any single model for wind power. The study used data obtained in 15 min intervals from the wind farm to determine the effectiveness of the proposed model against other advanced models. Compared with the other deep learning models, VMD-CNN-GRU is the best at short-term forecasting, with an RMSE of 1.5651, MAE of 0.8161, MAPE of 11.62%, and R2 of 0.9964. This method is valuable for practical applications and can be used to maintain safe wind farm operations in the future.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer [J].
Abualigah, Laith ;
Abd Elaziz, Mohamed ;
Sumari, Putra ;
Geem, Zong Woo ;
Gandomi, Amir H. .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
[2]   Applications, Deployments, and Integration of Internet of Drones (IoD): A Review [J].
Abualigah, Laith ;
Diabat, Ali ;
Sumari, Putra ;
Gandomi, Amir H. .
IEEE SENSORS JOURNAL, 2021, 21 (22) :25532-25546
[3]   Aquila Optimizer: A novel meta-heuristic optimization algorithm [J].
Abualigah, Laith ;
Yousri, Dalia ;
Abd Elaziz, Mohamed ;
Ewees, Ahmed A. ;
Al-qaness, Mohammed A. A. ;
Gandomi, Amir H. .
COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
[4]   The Arithmetic Optimization Algorithm [J].
Abualigah, Laith ;
Diabat, Ali ;
Mirjalili, Seyedali ;
Elaziz, Mohamed Abd ;
Gandomi, Amir H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
[5]  
Agushaka J.O., 2022, NEURAL COMPUT APPL, P1
[6]   A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer [J].
Altan, Aytac ;
Karasu, Seckin ;
Zio, Enrico .
APPLIED SOFT COMPUTING, 2021, 100
[7]   Copula-based probabilistic assessment of intensity and duration of cold episodes: A case study of Malayer vineyard region [J].
Chatrabgoun, O. ;
Karimi, R. ;
Daneshkhah, A. ;
Abolfathi, S. ;
Nouri, H. ;
Esmaeilbeigi, M. .
AGRICULTURAL AND FOREST METEOROLOGY, 2020, 295
[8]   2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model [J].
Chen, Yaoran ;
Wang, Yan ;
Dong, Zhikun ;
Su, Jie ;
Han, Zhaolong ;
Zhou, Dai ;
Zhao, Yongsheng ;
Bao, Yan .
ENERGY CONVERSION AND MANAGEMENT, 2021, 244
[9]   Investigation of energy output in mountain wind farm using multiple-units SCADA data [J].
Dai, Juchuan ;
Tan, Yayi ;
Shen, Xiangbin .
APPLIED ENERGY, 2019, 239 :225-238
[10]   Development of wind power industry in China: A comprehensive assessment [J].
Dai, Juchuan ;
Yang, Xin ;
Wen, Li .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 97 :156-164