A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte

被引:132
作者
Kondori, Alireza [1 ]
Esmaeilirad, Mohammadreza [1 ]
Harzandi, Ahmad Mosen [1 ]
Amine, Rachid [2 ]
Saray, Mahmoud Tamadoni [3 ]
Yu, Lei [4 ]
Liu, Tongchao [5 ]
Wen, Jianguo [4 ]
Shan, Nannan [2 ,6 ]
Wang, Hsien-Hau [2 ]
Ngo, Anh T. [2 ,6 ]
Redfern, Paul C. [2 ]
Johnson, Christopher S. [5 ]
Amine, Khalil [5 ,7 ,8 ]
Shahbazian-Yassar, Reza [3 ]
Curtiss, Larry A. [2 ]
Asadi, Mohammad [1 ]
机构
[1] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
[2] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[3] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[5] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[6] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[7] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
[8] Imam Abdulrahman Bin Faisal Univ IAU, Inst Res & Med Consultat IRMC, Dammam, Saudi Arabia
基金
美国国家科学基金会;
关键词
LONG CYCLE LIFE; HIGH-ENERGY-DENSITY; CHARGE-TRANSPORT; OXYGEN BATTERY; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; STATE; SUPEROXIDE; COMPOSITE; PERFORMANCE;
D O I
10.1126/science.abq1347
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one-and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12 nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion-electron-conducting discharge product and its interface with air.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [1] A lithium-oxygen battery with a long cycle life in an air-like atmosphere
    Asadi, Mohammad
    Sayahpour, Baharak
    Abbasi, Pedram
    Ngo, Anh T.
    Karis, Klas
    Jokisaari, Jacob R.
    Liu, Cong
    Narayanan, Badri
    Gerard, Marc
    Yasaei, Poya
    Hu, Xuan
    Mukherjee, Arijita
    Lau, Kah Chun
    Assary, Rajeev S.
    Khalili-Araghi, Fatemeh
    Klie, Robert F.
    Curtiss, Larry A.
    Salehi-Khojin, Amin
    [J]. NATURE, 2018, 555 (7697) : 502 - +
  • [2] CONDUCTIVITY AND TRANSFERENCE NUMBER MEASUREMENTS ON POLYMER ELECTROLYTES
    BRUCE, PG
    EVANS, J
    VINCENT, CA
    [J]. SOLID STATE IONICS, 1988, 28 : 918 - 922
  • [3] Determining and Minimizing Resistance for Ion Transport at the Polymer/Ceramic Electrolyte Interface
    Chen, X. Chelsea
    Liu, Xiaoming
    Pandian, Amaresh Samuthira
    Lou, Kun
    Delnick, Frank M.
    Dudney, Nancy J.
    [J]. ACS ENERGY LETTERS, 2019, 4 (05) : 1080 - 1085
  • [4] Effects of Plasticizer Content and Ceramic Addition on Electrochemical Properties of Cross-Linked Polymer Electrolyte
    Du, Zhijia
    Chen, X. Chelsea
    Sahore, Ritu
    Wu, Xianyang
    Li, Jianlin
    Dudney, Nancy J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (05)
  • [5] Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes
    Freunberger, Stefan A.
    Chen, Yuhui
    Peng, Zhangquan
    Griffin, John M.
    Hardwick, Laurence J.
    Barde, Fanny
    Novak, Petr
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (20) : 8040 - 8047
  • [6] Ionic conductivity in crystalline polymer electrolytes
    Gadjourova, Z
    Andreev, YG
    Tunstall, DP
    Bruce, PG
    [J]. NATURE, 2001, 412 (6846) : 520 - 523
  • [7] An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability
    Gao, Rui
    Liang, Xiu
    Yin, Penggang
    Wang, Junkai
    Lee, Yu Lin
    Hu, Zhongbo
    Liu, Xiangfeng
    [J]. NANO ENERGY, 2017, 41 : 535 - 542
  • [8] Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox
    Giordani, Vincent
    Tozier, Dylan
    Uddin, Jasim
    Tan, Hongjin
    Gallant, Betar M.
    McCloskey, Bryan D.
    Greer, Julia R.
    Chase, Gregory, V
    Addison, Dan
    [J]. NATURE CHEMISTRY, 2019, 11 (12) : 1133 - 1138
  • [9] Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water
    Hasegawa, Satoshi
    Imanishi, Nobuyuki
    Zhang, Tao
    Xie, Jian
    Hirano, Atsushi
    Takeda, Yasuo
    Yamamoto, Osamu
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (01) : 371 - 377
  • [10] Studies on Conductivity, Structural and Thermal Properties of PEO-LiTFSI Polymer Electrolytes doped with EMImTFSI Ionic Liquid
    Hashim, N. H. A. M.
    Subban, R. H. Y.
    [J]. 3RD INTERNATIONAL SCIENCES, TECHNOLOGY & ENGINEERING CONFERENCE (ISTEC) 2018 - MATERIAL CHEMISTRY, 2018, 2031