Generating Time-Series Data Using Generative Adversarial Networks for Mobility Demand Prediction

被引:4
|
作者
Chatterjee, Subhajit [1 ]
Byun, Yung-Cheol [2 ]
机构
[1] Jeju Natl Univ, Dept Comp Engn, Jeju Si 63243, South Korea
[2] Jeju Natl Univ, Inst Informat Sci & Technol, Dept Comp Engn, Major Elect Engn, Jeju 63243, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 74卷 / 03期
关键词
Machine learning; generative adversarial networks; electric vehicle; time-series; TGAN; WGAN-GP; blend model; demand prediction; regression; RANDOM FOREST;
D O I
10.32604/cmc.2023.032843
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features. Electric kickboards are gradually growing in popularity in tourist and education-centric localities. In the upcoming arrival of electric kickboard vehicles, deploying a customer rental service is essential. Due to its free-floating nature, the shared electric kickboard is a common and practical means of transportation. Relocation plans for shared electric kickboards are required to increase the quality of service, and forecasting demand for their use in a specific region is crucial. Predicting demand accurately with small data is troublesome. Extensive data is necessary for training machine learning algorithms for effective prediction. Data generation is a method for expanding the amount of data that will be further accessible for training. In this work, we proposed a model that takes time-series customers' electric kickboard demand data as input, pre-processes it, and generates synthetic data according to the original data distribution using generative adversarial networks (GAN). The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data. We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results. We modified The Wasserstein GAN-gradient penalty (GP) with the RMSprop optimizer and then employed Spectral Nor-malization (SN) to improve training stability and faster convergence. Finally, we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction. We used various evaluation crite-ria and visual representations to compare our proposed model's performance. Synthetic data generated by our suggested GAN model is also evaluated. The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem, and it also converges faster than previous GAN models for synthetic data creation. The presented model's performance is compared to existing ensemble and baseline models. The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error (MAPE) of 4.476 and increase prediction accuracy.
引用
收藏
页码:5507 / 5525
页数:19
相关论文
共 50 条
  • [31] On Generating Synthetic Histopathology Images Using Generative Adversarial Networks
    Carmody, Sean
    John, Deepu
    2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [32] Multivariate Time-Series Prediction Using LSTM Neural Networks
    Ghanbari, Reza
    Borna, Keivan
    2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [33] Generative adversarial networks for biomedical time series forecasting and imputation
    Festag, Sven
    Denzler, Joachim
    Spreckelsen, Cord
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 129
  • [34] Radar Image Prediction Using Generative Adversarial Networks
    Han, Lei
    Fang, Liyuan
    Zhang, Wei
    Ge, Yorong
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [35] Generating Input Data for Microstructure Modelling: A Deep Learning Approach Using Generative Adversarial Networks
    Puetz, Felix
    Henrich, Manuel
    Fehlemann, Niklas
    Roth, Andreas
    Muenstermann, Sebastian
    MATERIALS, 2020, 13 (19)
  • [36] Measuring Fidelity and Utility of Time Series Generative Adversarial Networks
    Ribeiro, Iran F.
    Brotto, Guilherme
    Rocha, Antonio A. de A.
    Mota, Vinicius E. S.
    2024 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, ISCC 2024, 2024,
  • [37] Using Gaussian Copulas and Generative Adversarial Networks for Generating Synthetic Data in Beet Productivity Analysis
    dos Santos, Denize Palmito
    Vasconcelos, Julio Cezar Souza
    SUGAR TECH, 2025, 27 (02) : 407 - 417
  • [38] Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images
    Huang, Tongge
    Chakraborty, Pranamesh
    Sharma, Anuj
    INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (01) : 1 - 18
  • [39] MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
    Li, Dan
    Chen, Dacheng
    Shi, Lei
    Jin, Baihong
    Goh, Jonathan
    Ng, See-Kiong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 703 - 716
  • [40] Generating Multiscale Maps From Satellite Images via Series Generative Adversarial Networks
    Chen, Xu
    Yin, Bangguo
    Chen, Songqiang
    Li, Haifeng
    Xu, Tian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19