Enhancement of the production of bio-aromatics from bamboo pyrolysis: Wet torrefaction pretreatment coupled with catalytic fast pyrolysis

被引:13
|
作者
Hu, Zhouyang [1 ]
Zhu, Liang [1 ]
Cai, Hongyi [2 ]
Huang, Ming [1 ]
Li, Jie [1 ]
Cai, Bo [1 ]
Chen, Dengyu [3 ]
Zhu, Lingjun [4 ]
Yang, Youyou [5 ,6 ]
Ma, Zhongqing [1 ,6 ]
机构
[1] Zhejiang A&F Univ, Coll Chem & Mat Engn, Hangzhou 311300, Zhejiang, Peoples R China
[2] Peoples Govt Yaoshan village, Hangzhou 311703, Zhejiang, Peoples R China
[3] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu Provinc, Peoples R China
[4] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Zhejiang A&F Univ, Coll Humanities & Law, Hangzhou 311300, Zhejiang, Peoples R China
[6] Zhejiang A&F Univ, Coll Chem & Mat Engn, 666 Wusu Rd, Hangzhou 311300, Zhejiang Provin, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Wet torrefaction pretreatment; Deoxygenation and demineralization; Catalytic fast pyrolysis; Bio-aromatics; HYDROTHERMAL CARBONIZATION HTC; OF-THE-ART; LIGNOCELLULOSIC BIOMASS; CHEMICAL-STRUCTURE; DRY TORREFACTION; QUALITY; TEMPERATURE; LIGNIN; OIL; BEHAVIOR;
D O I
10.1016/j.jaap.2022.105818
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Light aromatics are important organic building blocks in the chemical industry which can be produced by cat-alytic fast pyrolysis (CFP) of biomass. In this work, wet torrefaction pretreatment (WTP) was employed to improve the quality of bamboo by synergistic effect of deoxygenation and demineralization. Then, CFP was employed to produce bio-aromatics by using zeolite (e.g. HZSM-5, HY, Al-MCM-41, and USY) as catalyst. Results showed that WTP temperature (180-260 degrees C) had more significant influence on the mass yields of torrefied products compared to WTP duration (30-150 min). The maximum deoxygenation rate was 49.36% at WTP conditions of 260 degrees C and 150 min, and the maximum demineralization rate followed the order of 96.29% (K) > 94.54% (Na) > 90.33% (Mg) > 89.22% (Ca). Among the five types of zeolite catalyst tested, HZSM-5 (25) was the best catalyst to obtain bio-aromatics due to its unique pore size and reasonable acidity. The maximum yield of aromatics (25.46 x107 a.u./mg) was obtained at the WTP temperature of 220 degrees C, biomass-to-catalyst ratio of 3:1, and CFP temperature of 850 degrees C. Toluene was the more favored monocyclic aromatic hydrocarbon formed during CFP compared to xylene and benzene.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Enhancement of aromatics production from catalytic co-pyrolysis of walnut shell and LDPE via a two-step approach
    Yu, Dongxue
    Hui, Helong
    Ding, Guangchao
    Dong, Ning
    Li, Songgeng
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2021, 157
  • [32] Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv-Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics
    Charisteidis, Ioannis
    Lazaridis, Polykarpos
    Fotopoulos, Apostolos
    Pachatouridou, Eleni
    Matsakas, Leonidas
    Rova, Ulrika
    Christakopoulos, Paul
    Triantafyllidis, Konstantinos
    CATALYSTS, 2019, 9 (11)
  • [33] Production of phenolic-rich bio-oil from catalytic fast pyrolysis of biomass using magnetic solid base catalyst
    Zhang, Zhi-bo
    Lu, Qiang
    Ye, Xiao-ning
    Li, Wen-tao
    Hu, Bin
    Dong, Chang-qing
    ENERGY CONVERSION AND MANAGEMENT, 2015, 106 : 1309 - 1317
  • [34] Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw
    Ukaew, Suchada
    Schoenborn, Jacob
    Klemetsrud, Bethany
    Shonnard, David R.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 129 : 112 - 122
  • [35] Fast pyrolysis of paper sludge in a continuous stirred-tank reactor and liquid-liquid extraction of benzenoid aromatics from fast pyrolysis bio-liquid
    Zhang, Tiantian
    Rivas, Alvaro Gonzalez
    Fernandez, Xavier Fragua
    Li, Na
    Gucho, Eyerusalem
    Zhu, Lin
    Bijl, Anton
    Llacuna, Joan Llorens
    He, Songbo
    RENEWABLE ENERGY, 2024, 236
  • [36] Enhancement of aromatics production via cellulose fast pyrolysis over Ru modified hierarchical zeolites
    Zhang, Jun
    Li, Chengyu
    Yuan, Haoran
    Chen, Yong
    RENEWABLE ENERGY, 2022, 184 : 280 - 290
  • [37] Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition
    Moogi, Surendar
    Jae, Jungho
    Kannapu, Hari Prasad Reddy
    Ahmed, Ashfaq
    Park, Eun Duck
    Park, Young-Kwon
    BIORESOURCE TECHNOLOGY, 2020, 315
  • [38] Enhancement of levoglucosan production via fast pyrolysis of sugarcane bagasse by pretreatment with Keggin heteropolyacids
    Teixeira, Milena Galdino
    Silva Pereira, Sarah de Paiva
    Fernandes, Sergio Antonio
    da Silva, Marcio Jose
    INDUSTRIAL CROPS AND PRODUCTS, 2020, 154 (154)
  • [39] Comparative Production of Bio-Oil from In Situ Catalytic Upgrading of Fast Pyrolysis of Lignocellulosic Biomass
    Abdulkhani, Ali
    Zadeh, Zahra Echresh
    Bawa, Solomon Gajere
    Sun, Fubao
    Madadi, Meysam
    Zhang, Xueming
    Saha, Basudeb
    ENERGIES, 2023, 16 (06)
  • [40] Enhancement of aromatics production from catalytic pyrolysis of biomass over HZSM-5 modified by chemical liquid deposition
    Dai, Gongxin
    Wang, Shurong
    Huang, Shuqiong
    Zou, Qun
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 134 : 439 - 445