MIL-100(Fe) a potent adsorbent of Dacarbazine: Experimental and molecular docking simulation

被引:50
|
作者
Barjasteh, Mahdi [1 ]
Vossoughi, Manouchehr [2 ]
Bagherzadeh, Mojtaba [3 ]
Bagheri, Kamran Pooshang [4 ]
机构
[1] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
[2] Sharif Univ Technol, Dept Chem & Petr Engn, Tehran, Iran
[3] Sharif Univ Technol, Dept Chem, Tehran, Iran
[4] Pasteur Inst Iran, Biotechnol Res Ctr, Med Biotechnol Dept, Venom & Biotherapeut Mol Lab, Tehran, Iran
关键词
MOFs; Drug adsorption; Water treatment; Dacarbazine; MIL-100(Fe); METAL-ORGANIC FRAMEWORK; SOLID-PHASE EXTRACTION; CARE PRODUCTS PPCPS; ADSORPTIVE REMOVAL; WASTE-WATER; AQUEOUS-SOLUTIONS; CLOFIBRIC ACID; PHARMACEUTICALS; DRUG; DEGRADATION;
D O I
10.1016/j.cej.2022.138987
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dacarbazine (DTIC) is a commonly used anticancer drug that has been found in pharmaceutical and hospital wastewater, posing a risk to human health and aquatic environments. In the present work, MIL-100(Fe) metal-organic framework (MOF) was synthesized using a rapid and green synthesis technique. The crystallinity and the porosity of the synthesized MIL-100(Fe) particles were investigated against air, and the results showed that the prepared particles are stable in air, and their surface area decreased from 1174 m(2)/g to 638 m(2)/g after aging for three years. This MOF was applied as an adsorbent to remove DTIC from contaminated water for the first time. The synthesized MOF particles exhibited a high adsorption capacity of 292.87 mg/g for DTIC at optimum conditions, mainly because of their high surface area and suitable porous structure. The experimental adsorption kinetic and isotherm results demonstrated that the adsorption of DTIC onto this adsorbent followed the pseudosecond-order kinetic model and Freundlich isotherm model, respectively. Moreover, the thermodynamic investigations showed that the adsorption of DTIC molecules on MIL-100(Fe) was spontaneous and exothermic. Furthermore, the pH and salt concentration studies revealed that the electrostatic interaction is the main adsorption mechanism. Additionally, molecular docking calculation results suggested that the DTIC molecules can interact with the MIL-100(Fe) particles via hydrogen bonding with a binding energy of about 5.1 kcal/mol. It was found that the MIL-100(Fe) particles can be easily recovered by simple washing with ethanol solution and can be reused for further adsorption process.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] MIL-100(Fe)/ZnFe2o4 /PCN
    Xu, Kailin
    Jiao, Li
    Wang, Chuqiao
    Bu, Yiming
    Tang, Yuling
    Qiu, Liwei
    Zhang, Qiuya
    Wang, Liping
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2022, 111 : 93 - 103
  • [22] MIL-100(Fe)-catalyzed efficient conversion of hexoses to lactic acid
    Huang, Shan
    Yang, Kai-Li
    Liu, Xiao-Fang
    Pan, Hu
    Zhang, Heng
    Yang, Song
    RSC ADVANCES, 2017, 7 (10): : 5621 - 5627
  • [23] Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions
    Abhik Bhattacharjee
    Mihir Kumar Purkait
    Sasidhar Gumma
    Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30 : 2366 - 2375
  • [24] Doxorubicin Loading Capacity of MIL-100(Fe): Effect of Synthesis Conditions
    Bhattacharjee, Abhik
    Purkait, Mihir Kumar
    Gumma, Sasidhar
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2020, 30 (07) : 2366 - 2375
  • [25] Aluminum-Decorated MIL-100(Fe) Nanozyme for the Detection of Glutathione
    Cui, Lin
    Zhao, Xinshuo
    Zhang, Jiankang
    Zhou, Zhan
    Lin, Dong
    Qin, Yong
    ACS APPLIED NANO MATERIALS, 2024, 7 (05) : 4764 - 4771
  • [26] 磁性MIL-100(Fe)微粒制备及其萃取应用
    吴官永
    王筱倩
    党雪平
    陈怀侠
    湖北大学学报(自然科学版), 2022, 44 (03) : 265 - 269
  • [27] Mesoporous metal–organic framework MIL-100(Fe) as drug carrier
    Paulo G. M. Mileo
    Diony N. Gomes
    Daniel V. Gonçalves
    Sebastião M. P. Lucena
    Adsorption, 2021, 27 : 1123 - 1135
  • [28] Sandwich-like MIL-100(Fe)@Pt@MIL-100(Fe) nanoparticles for catalytic hydrogenation of 4-nitrophenol
    Chen, Zhiming
    Xu, Bo
    Wang, Xiaomei
    Zhang, Li
    Yang, Xiaoqing
    Li, Cuncheng
    CATALYSIS COMMUNICATIONS, 2017, 102 : 17 - 20
  • [29] A supported Cu(I)@MIL-100(Fe) adsorbent with high CO adsorption capacity and CO/N2 selectivity
    Peng, Junjie
    Xian, Sikai
    Xiao, Jing
    Huang, Yan
    Xia, Qibin
    Wang, Haihui
    Li, Zhong
    CHEMICAL ENGINEERING JOURNAL, 2015, 270 : 282 - 289
  • [30] Green synthesis of PEG-coated MIL-100(Fe) for controlled release of dacarbazine and its anticancer potential against human melanoma cells
    Barjasteh, Mahdi
    Vossoughi, Manouchehr
    Bagherzadeh, Mojtaba
    Bagheri, Kamran Pooshang
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2022, 618