Microstructure and Mechanical Properties of Copper/Graphene Composites Fabricated via Accumulative Roll Bonding and Heat Treatment without a Controlled Atmosphere

被引:5
作者
da Cruz, Ricardo Aparecido [1 ,2 ]
Mendes Filho, Anibal de Andrade [3 ]
dos Santos, Silvano Leal [4 ]
dos Santos, Vinicius Torres [5 ]
da Silva, Marcio Rodrigues [5 ]
Lobo, Flavia Goncalves [5 ]
dos Santos, Givanildo Alves [2 ]
Couto, Antonio Augusto [1 ]
机构
[1] Mackenzie Presbyterian Univ UPM, Sch Engn, BR-01302907 Sao Paulo, SP, Brazil
[2] Fed Inst Educ Sci & Technol Sao Paulo, Dept Mech, BR-01109010 Sao Paulo, SP, Brazil
[3] Fed Univ ABC, Ctr Engn Modeling & Appl Social Sci, BR-09210580 Santo Andre, SP, Brazil
[4] Fac Technol Sao Paulo, Characterizat & Proc Lab LPCM, BR-01124060 Sao Paulo, SP, Brazil
[5] Termomecan Sao Paulo SA, Dept Res & Dev, BR-09612000 Sao Bernardo Do Campo, Brazil
关键词
copper; copper composite; graphene; electrical conductivity; mechanical properties; yield strength; ultimate tensile strength; annealing; heat treatment; accumulative roll bonding; PURE COPPER; STRENGTHENING MECHANISMS; DISLOCATION DENSITY; MATRIX; GRAPHENE; EVOLUTION; BEHAVIOR; CU; CARBIDE;
D O I
10.3390/met14010004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Copper and its alloys are structural materials used in industries and engineering applications due to their excellent thermal and electrical conductivity and chemical stability. Integrating graphene, known for its exceptional electrical conductivity, into the copper matrix is a promising strategy to enhance mechanical properties without sacrificing electrical conductivity. The Accumulative Roll Bonding (ARB) process can effectively and homogeneously introduce graphene into the metal matrix and is adaptable to an industrial scale. This study investigates the impact of varying graphene concentrations and two heat treatment protocols (without a controlled atmosphere) on the mechanical and electrical properties of ARBed copper/graphene composites. Optical microscopy revealed minimal voids and graphene clumps, and the energy dispersive spectroscopy analysis revealed the absence of copper oxide in some samples. The conductivity test showed little influence of the graphene content and stress relief heat treatment temperature on electrical conductivity (similar to 86% of the International Annealed Copper Standard) within a limited number of ARB cycles. The tensile tests did not reveal a significant influence of the graphene content and stress relief heat treatment temperature on the ultimate tensile strength (220-420 MPa) and elongation (similar to 2%).
引用
收藏
页数:25
相关论文
共 51 条
[1]   Development of Cu-matrix, Al/Mn-reinforced, multilayered composites by accumulative roll bonding (ARB) [J].
Alizadeh, Morteza ;
Dashtestaninejad, Mehrangiz K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 732 :674-682
[2]   Mechanically strengthened graphene-Cu composite with reduced thermal expansion towards interconnect applications [J].
An, Zhonglie ;
Li, Jinhua ;
Kikuchi, Akio ;
Wang, Zhuqing ;
Jiang, Yonggang ;
Ono, Takahito .
MICROSYSTEMS & NANOENGINEERING, 2019, 5 (1)
[3]  
ASM International Handbook Committee, 1991, ASM Handbook, Heat Treating, VVolume 4, P1970
[4]   Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites [J].
Boostani, A. Fadavi ;
Yazdani, S. ;
Mousavian, R. Taherzadeh ;
Tahamtan, S. ;
Khosroshahi, R. Azari ;
Wei, D. ;
Brabazon, D. ;
Xu, J. Z. ;
Zhang, X. M. ;
Jiang, Z. Y. .
MATERIALS & DESIGN, 2015, 88 :983-989
[5]   Fabrication of graphene/copper nanocomposites via in-situ delamination of graphite in copper by accumulative roll-compositing [J].
Chen, F. ;
Mei, Q. S. ;
Li, J. Y. ;
Li, C. L. ;
Wan, L. ;
Zhang, G. D. ;
Mei, X. M. ;
Chen, Z. H. ;
Xu, T. ;
Wang, Y. C. .
COMPOSITES PART B-ENGINEERING, 2021, 216
[6]  
Dehghan M, 2020, T NONFERR METAL SOC, V30, P2381, DOI [10.1016/S1003-6326(20)65386, 10.1016/S1003-6326(20)65386-9]
[7]   Microstructural Evolution and Mechanical Behavior of Cu/Nb Multilayer Composites Processed by Accumulative Roll Bonding [J].
Ding, Chaogang ;
Xu, Jie ;
Li, Xuewen ;
Shan, Debin ;
Guo, Bin ;
Langdon, Terence G. .
ADVANCED ENGINEERING MATERIALS, 2020, 22 (01)
[8]   Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties [J].
Dong, L. L. ;
Fu, Y. Q. ;
Liu, Y. ;
Lu, J. W. ;
Zhang, W. ;
Huo, W. T. ;
Jin, L. H. ;
Zhang, Y. S. .
CARBON, 2021, 173 (173) :41-53
[9]   Curly Graphene with Specious Inter layers Displaying Superior Capacity for Hydrogen Storage [J].
Eftekhari, Ali ;
Jafarkhani, Parvaneh .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (48) :25845-25851
[10]   Fabrication of Cu-CuG nanocomposites with enhanced mechanical strength and reduced electrical resistivity [J].
Eivani, A. R. ;
Shojaei, A. ;
Park, N. ;
Jafarian, H. R. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 11 :650-666