A novel problem-solving method by multi-computational optimisation of artificial neural network for modelling and prediction of the flow erosion processes

被引:11
作者
Moayedi, Hossein [1 ,2 ]
Dehrashid, Atefeh Ahmadi [3 ,4 ]
Le, Binh Nguyen [1 ,2 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] Duy Tan Univ, Sch Engn & Technol, Da Nang, Vietnam
[3] Univ Kurdistan, Fac Nat Resources, Dept Climatol, Sanandaj, Iran
[4] Univ Kurdistan, Kurdistan Studies Inst, Dept Zrebar Lake Environm Res, Sanandaj, Iran
关键词
Optimization of ANN; flow erosion processes (FEP); modelling; hybrid algorithm; REMOTE-SENSING DATA; SOIL-EROSION; GENETIC ALGORITHM; APPRAISAL; RUNOFF;
D O I
10.1080/19942060.2023.2300456
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research aims to forecast, using various criteria, the flow of soil erosion that will occur at a particular geographical location. As for the training dataset, 80% of the dataset from the sample sites, four hybrid algorithms, namely heap-based optimizer (HBO), political optimizer (PO), teaching-learning based optimization (TLBO), and backtracking search algorithm (BSA) combined with artificial neural network (ANN) was used to create an erosion susceptibility model and establishes a unique and original approach. After it was confirmed to be successful, the algorithms were applied to create a susceptibility map for this area, demonstrating the integrity of the results. The AUC values were computed for every optimisation algorithm used in this study. The optimal estimated accuracy indices for populations of 450 were determined to be 0.9846 using the BSA-MLP training databases. The maximum AUC value for the HBO-MLP training databases with different swarm sizes was 0.9736. A swarm size of 350-300 is considered optimal for forecasting erosion susceptibility mapping in hybrid models. With the same swarm size constraints, the AUC value for training in the TLBO-MLP scenario was 0.996. After 150 swarm size conditions were used to train the PO-MLP model, the AUC values were 0.9845. According to these findings, the TLBO-MLP and PO-MLP algorithms worked best with populations of 50 and 150, respectively.
引用
收藏
页数:26
相关论文
共 82 条
  • [81] A decomposition and multi-objective evolutionary optimization model for suspended sediment load prediction in rivers
    Zhao, Nannan
    Ghaemi, Alireza
    Wu, Chengwen
    Band, Shahab S.
    Chau, Kwok-Wing
    Zaguia, Atef
    Mafarja, Majdi
    Mosavi, Amir H.
    [J]. ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2021, 15 (01) : 1811 - 1829
  • [82] Using artificial neural network models to produce soil organic carbon content distribution maps across landscapes
    Zhao, Zhengyong
    Yang, Qi
    Benoy, Glenn
    Chow, Thien Lien
    Xing, Zisheng
    Rees, Herb W.
    Meng, Fan-Rui
    [J]. CANADIAN JOURNAL OF SOIL SCIENCE, 2010, 90 (01) : 75 - 87