Semi-invariant distribution vectors for p-adic unipotent groups

被引:0
作者
Maaref, Souha [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
Unipotent algebraic group; unitary representation; coadjoint orbits; distribution vector; UNITARY REPRESENTATIONS;
D O I
10.1142/S0129167X2350088X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a unipotent algebraic group defined over a p-adic field of characteristic zero. We denote by G the set of rational points of G. It is a p-adic Lie group with Lie algebra denoted by g. Let pi be an irreducible unitary representation of G in a Hilbert space H-pi, f be a linear form on g and h be a polarization at f. We denote by chi(f) a character of H = exp(h) related to f. The aim of this study is to give a precise description of the space of semi-invariant distribution vectors (H-pi(-infinity))(H,chi f) of pi.
引用
收藏
页数:17
相关论文
共 15 条
[1]  
Bernstein I N., 1976, USP MAT NAUK, V31, P5
[2]  
Borel A., 1969, LINEAR ALGEBRAIC GRO
[3]  
Corwin Lawrence J., 1990, Representations of Nilpotent Lie Groups and Their Applications, Part I: Basic Theory and Examples, V18
[4]  
Fujiwara H., 1988, Adv. St. Pure Math, V14, P153
[6]  
KIRILLOV AA, 1960, DOKL AKAD NAUK SSSR+, V130, P966
[7]  
Lion G., 1981, Noncommutative Harmonic Analysis and Lie Groups (Marseille, 1980), V880, P337
[8]   Distinction for Unipotent p-Adic Groups [J].
Matringe, Nadir .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (06) :1571-1582
[10]  
Platonov V. P., 1992, Algebraic Groups and Number Theory