This article introduces a unified factor overnight GARCH-Ito model for large volatility matrix estimation and prediction. To account for whole-day market dynamics, the proposed model has two different instantaneous factor volatility processes for the open-to-close and close-to-open periods, while each embeds the discrete-time multivariate GARCH model structure. To estimate latent factor volatility, we assume the low rank plus sparse structure and employ nonparametric estimation procedures. Then, based on the connection between the discrete-time model structure and the continuous-time diffusion process, we propose a weighted least squares estimation procedure with the non-parametric factor volatility estimator and establish its asymptotic theorems.
机构:
Arizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Sogang Univ, Dept Econ, Seoul 121742, South KoreaArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Ahn, Seung C.
;
Horenstein, Alex R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Dept Econ, Coral Gables, FL 33124 USA
Inst Tecnol Autonomo Mexico, Dept Business, Mexico City 01080, DF, MexicoArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
机构:
Arizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Sogang Univ, Dept Econ, Seoul 121742, South KoreaArizona State Univ, Dept Econ, Tempe, AZ 85287 USA
Ahn, Seung C.
;
Horenstein, Alex R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Dept Econ, Coral Gables, FL 33124 USA
Inst Tecnol Autonomo Mexico, Dept Business, Mexico City 01080, DF, MexicoArizona State Univ, Dept Econ, Tempe, AZ 85287 USA