Classification of Dead Cocoons Using Convolutional Neural Networks and Machine Learning Methods

被引:0
|
作者
Lee, Ahyeong [1 ]
Kim, Giyoung [1 ]
Hong, Suk-Ju [1 ]
Kim, Seong-Wan [2 ]
Kim, Ghiseok [3 ,4 ,5 ]
机构
[1] Natl Inst Agr Sci, Dept Agr Engn, Jeonju 54875, South Korea
[2] Natl Inst Agr Sci, Dept Agr Biol, Wonju 55365, South Korea
[3] Seoul Natl Univ, Integrated Major Global Smart Farm, Seoul 08826, South Korea
[4] Seoul Natl Univ, Coll Agr & Life Sci, Dept Biosyst Engn, Seoul 08826, South Korea
[5] Seoul Natl Univ, Res Inst Agr & Life Sci, Coll Agr & Life Sci, Seoul 08826, South Korea
来源
IEEE ACCESS | 2023年 / 11卷
关键词
Convolutional neural networks; machine learning; discrimination; cocoon; IDENTIFICATION; COLOR; SEX;
D O I
10.1109/ACCESS.2023.3338540
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image recognition methods classify or categorize objects by extracting significant properties from digital images of the objects and are used in the field of agriculture for quality determination. With the development of artificial intelligence technology, deep-learning techniques and tools such as convolutional neural networks (CNNs) have been used in image recognition. Existing discrimination studies have tended to extract features from images and classify them using multivariate analysis; however, deep learning algorithms have the self-learning ability to extract the feature points themselves for each neural layer. In this study, we developed models for discriminating dead cocoons using various discriminant analysis methods, including deep learning options, to establish an automation technology for the sericulture industry. A 100 W halogen light source was used for direct irradiation onto the cocoons, and a camera was positioned at the bottom of the cocoons (of which 43.9% were dead) to obtain RGB images. We conducted discrimination analyses based on the color space using four discrimination algorithms, namely, k-nearest neighbor, support vector machine, linear discriminant analysis, and partial least squares-discriminant analysis, within deep learning models (a proposed lightweight CNN model, VGG16, ResNet50, EfficientNetB0, MobileNet, ShuffleNet, GhostNet, and ConvNext). The proposed lightweight CNN model, which consisted of six convolutional layers and two fully connected layers, showed the highest discrimination accuracy (97.66%) in the Lab color space. It was thus confirmed that it is possible to automate the discrimination of dead cocoons using digital images and deep learning techniques.
引用
收藏
页码:137317 / 137327
页数:11
相关论文
共 50 条
  • [31] Wheel Classification Using Convolutional Neural Networks
    Nie, Yuncong
    Xia, Siyu
    Wu, Yu
    PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 515 - 520
  • [32] Using Convolutional Neural Networks for Emoticon Classification
    Burnik, K.
    Knezevic, D. Bjelobrk
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1614 - 1618
  • [33] Machine learning with convolutional neural networks for clinical cardiologists
    Howard, James Philip
    Francis, Darrel P.
    HEART, 2022, 108 (12) : 973 - 981
  • [34] Transfer Learning for Leaf Classification with Convolutional Neural Networks
    Esmaeili, Hassan
    Phoka, Thanathorn
    2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 191 - 196
  • [35] Mechanical fault diagnosis using Convolutional Neural Networks and Extreme Learning Machine
    Chen, Zhuyun
    Gryllias, Konstantinos
    Li, Weihua
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 133
  • [36] Using Visualization of Convolutional Neural Networks in Virtual Reality for Machine Learning Newcomers
    Meissler, Nadine
    Wohlan, Annika
    Hochgeschwender, Nico
    Schreiber, Andreas
    2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR), 2019, : 152 - 158
  • [37] Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks
    Carreras, Joaquim
    JOURNAL OF IMAGING, 2024, 10 (08)
  • [38] Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks
    Parvan, Milad
    Ghiasi, Amir Rikhtehgar
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1825 - 1828
  • [39] Transfer Learning between Texture Classification Tasks using Convolutional Neural Networks
    Hafemann, Luiz G.
    Oliveira, Luiz S.
    Cavalin, Paulo R.
    Sabourin, Robert
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [40] Cervical cancer classification using convolutional neural networks and extreme learning machines
    Ghoneim, Ahmed
    Muhammad, Ghulam
    Hossain, M. Shamim
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 643 - 649