FUNCTION ASSIGNMENT OF PLASTICS BASED ON HYPERSPECTRAL SATELLITE IMAGES AND HIGH-RESOLUTION DATA USING DEEP LEARNING ALGORITHMS

被引:0
作者
Zhou, Shanyu [1 ,2 ]
Mou, Lichao [1 ]
Zhang, Lixian [3 ]
Hua, Yuansheng [1 ]
Kaufmann, Hermann [2 ]
Zhu, Xiaoxiang [1 ]
机构
[1] Tech Univ Munich, Data Sci Earth Observat, D-80333 Munich, Germany
[2] German Res Ctr Geosci GFZ, Remote Sensing & Geoinformat, D-14473 Potsdam, Germany
[3] Tsinghua Univ, Dept Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Sentinel-2; Plastic detection; Deep learning; Image processing; Classification;
D O I
10.1109/IGARSS52108.2023.10283116
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Plastic pollution is becoming an increasingly prominent problem and the function of plastics determines whether they need to be recycled or not. In order to explore the possibility of using satellite imagery to classify the functionality of plastics, this study proposes a two-stage workflow: firstly, a classification map is obtained based on hyperspectral satellite imagery to generate plastic types, and then using these identified plastic coverage areas, a deep learning algorithm is used to assign functionality to these classified plastic areas based on sentinel-2 imagery. By comparing five leading-edge image classification models, classification accuracies of up to 74% were achieved, demonstrating the feasibility of using deep learning models trained on satellite images to identify plastic features.
引用
收藏
页码:7257 / 7260
页数:4
相关论文
共 50 条
[21]   Scaling Deep Learning-Based Analysis of High-Resolution Satellite Imagery with Distributed Processing [J].
Nguyen, Mai H. ;
Li, Jiaxin ;
Crawl, Daniel ;
Block, Jessica ;
Altintas, Ilkay .
2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, :5437-5443
[22]   Cloud Detection in High-Resolution Multispectral Satellite Imagery Using Deep Learning [J].
Morales, Giorgio ;
Huaman, Samuel G. ;
Telles, Joel .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 :280-288
[23]   GROUND TRUTH SIMULATION FOR DEEP LEARNING CLASSIFICATION OF MID-RESOLUTION VENUS IMAGES VIA UNMIXING OF HIGH-RESOLUTION HYPERSPECTRAL FENIX DATA [J].
Faran, Ido ;
Netanyahu, Nathan S. ;
David, Eli ;
Shoshany, Maxim ;
Kizel, Fadi ;
Chang, Jisung Geba ;
Rud, Ronit .
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, :807-810
[24]   Extending deep learning approaches for forest disturbance segmentation on very high-resolution satellite images [J].
Kislov, Dmitry E. ;
Korznikov, Kirill A. ;
Altman, Jan ;
Vozmishcheva, Anna S. ;
Krestov, Pavel V. .
REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2021, 7 (03) :355-368
[25]   Fixation data analysis for complex high-resolution satellite images* [J].
Sharma, Ashu ;
Kumar Ghosh, Jayanta ;
Kolay, Saptarshi .
GEOCARTO INTERNATIONAL, 2021, 36 (06) :698-719
[26]   A Deep Learning Approach to an Enhanced Building Footprint and Road Detection in High-Resolution Satellite Imagery [J].
Ayala, Christian ;
Sesma, Ruben ;
Aranda, Carlos ;
Galar, Mikel .
REMOTE SENSING, 2021, 13 (16)
[27]   BathyFormer: A Transformer-Based Deep Learning Method to Map Nearshore Bathymetry with High-Resolution Multispectral Satellite Imagery [J].
Lv, Zhonghui ;
Herman, Julie ;
Brewer, Ethan ;
Nunez, Karinna ;
Runfola, Dan .
REMOTE SENSING, 2025, 17 (07)
[28]   Cropland Extraction in Southern China from Very High-Resolution Images Based on Deep Learning [J].
Xie, Dehua ;
Xu, Han ;
Xiong, Xiliu ;
Liu, Min ;
Hu, Haoran ;
Xiong, Mengsen ;
Liu, Luo .
REMOTE SENSING, 2023, 15 (09)
[29]   A Multiscale Deep Learning Approach for High-Resolution Hyperspectral Image Classification [J].
Safari, Kazem ;
Prasad, Saurabh ;
Labate, Demetrio .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) :167-171
[30]   Capacity Estimation of Solar Farms Using Deep Learning on High-Resolution Satellite Imagery [J].
Ravishankar, Rashmi ;
AlMahmoud, Elaf ;
Habib, Abdulelah ;
de Weck, Olivier L. .
REMOTE SENSING, 2023, 15 (01)