Energy Maximization for Ground Nodes in UAV-Enabled Wireless Power Transfer Systems

被引:5
|
作者
Li, Min [1 ]
Li, Hao [1 ]
Ma, Pengfei [1 ]
Wang, Heng [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Ind Internet Things & Networked Control, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy maximization; propulsion power consumption; rotary-wing UAV; UAV-enabled wireless power transfer (WPT) systems; WPT; TRAJECTORY DESIGN; COMMUNICATION; OPTIMIZATION; NETWORKS;
D O I
10.1109/JIOT.2023.3274549
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In UAV-enabled wireless power transfer (WPT) systems, the UAV is usually planned to fly and charge the ground nodes (GNs), so as to prolong the lifetime of wireless sensor networks. But in fact, the long charging distance between the UAV and the GNs makes the GNs receive less energy. In order to maximize the received energy of GNs, this article focuses on the charging process and proposes a V-shaped WPT scheme, where the UAV descends to the optimal hover position and charges the GNs, so as to transfer more energy to the GNs. Moreover, considering that the GNs far from the hover position receive little energy in the V-shaped WPT scheme, we further develop an Inverted Trapezoidal WPT scheme to improve the fairness of the energy received by the GNs, in which the UAV continuously charges the GNs whether it is hovering or flying horizontally after lowering its altitude. Because the UAV's flight and maneuvering are strictly constrained by its loading energy, we establish the UAV's propulsion power consumption model in different flight attitudes and formulate the optimization problems of the GNs' received energy in two schemes, and then develop two algorithms to solve them. The simulation results show that the performance metrics of UAV's energy consumption, the efficiency, and fairness of GNs' received energy are better than the compared schemes.
引用
收藏
页码:17096 / 17109
页数:14
相关论文
共 50 条
  • [1] Energy Minimization for UAV-Enabled Wireless Power Transfer and Relay Networks
    He, Zhenyao
    Ji, Yukuan
    Wang, Kezhi
    Xu, Wei
    Shen, Hong
    Wang, Ning
    You, Xiaohu
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (21) : 19141 - 19152
  • [2] Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting
    Yuan, Xiaopeng
    Yang, Tianyu
    Hu, Yulin
    Xu, Jie
    Schmeink, Anke
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (02) : 1105 - 1121
  • [3] UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Region Characterization
    Xu, Jie
    Zeng, Yong
    Zhang, Rui
    2017 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2017,
  • [4] UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization
    Xu, Jie
    Zeng, Yong
    Zhang, Rui
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (08) : 5092 - 5106
  • [5] UAV-Enabled Wireless Power Transfer With Base Station Charging and UAV Power Consumption
    Yan, Hua
    Chen, Yunfei
    Yang, Shuang-Hua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 12883 - 12896
  • [6] Simultaneous Wireless Information and Power Transfer for Multiuser UAV-Enabled IoT Networks
    Jeong, Cheol
    Chae, Sung Ho
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (10) : 8044 - 8055
  • [7] UAV-Enabled Wireless Power Transfer: A Tutorial Overview
    Xie, Lifeng
    Cao, Xiaowen
    Xu, Jie
    Zhang, Rui
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2021, 5 (04): : 2042 - 2064
  • [8] Secrecy Energy Efficiency Maximization for UAV-Enabled Mobile Relaying
    Xiao, Lin
    Xu, Yu
    Yang, Dingcheng
    Zeng, Yong
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2020, 4 (01): : 180 - 193
  • [9] Throughput Maximization for UAV-Enabled Mobile Relaying Systems
    Zeng, Yong
    Zhang, Rui
    Lim, Teng Joon
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (12) : 4983 - 4996
  • [10] Joint Design of UAV Trajectory and Directional Antenna Orientation in UAV-Enabled Wireless Power Transfer Networks
    Yuan, Xiaopeng
    Hu, Yulin
    Schmeink, Anke
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (10) : 3081 - 3096