TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation

被引:20
作者
Lee, Taeyeop [1 ]
Tremblay, Jonathan [2 ]
Blukis, Valts [2 ]
Wen, Bowen [2 ]
Lee, Byeong-Uk [1 ]
Shin, Inkyu [1 ]
Birchfield, Stan [2 ]
Kweon, In So [1 ]
Yoon, Kuk-Jin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] NVIDIA, San Francisco, CA USA
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.02039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation methods have been gaining attention recently as a practical solution for addressing source-to-target domain gaps by gradually updating the model without requiring labels on the target data. In this paper, we propose a method of test-time adaptation for category-level object pose estimation called TTA-COPE. We design a pose ensemble approach with a self-training loss using pose-aware confidence. Unlike previous unsupervised domain adaptation methods for category-level object pose estimation, our approach processes the test data in a sequential, online manner, and it does not require access to the source domain at runtime. Extensive experimental results demonstrate that the proposed pose ensemble and the self-training loss improve category-level object pose performance during test time under both semi-supervised and unsupervised settings.
引用
收藏
页码:21285 / 21295
页数:11
相关论文
共 53 条
[1]   Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations [J].
Ahmadyan, Adel ;
Zhang, Liangkai ;
Ablavatski, Artsiom ;
Wei, Jianing ;
Grundmann, Matthias .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7818-7827
[2]   Learning Canonical Shape Space for Category-Level 6D Object Pose and Size Estimation [J].
Chen, Dengsheng ;
Li, Jun ;
Wang, Zheng ;
Xu, Kai .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11970-11979
[3]   SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation [J].
Chen, Kai ;
Dou, Qi .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :2753-2762
[4]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[5]  
Dou Qi, 2021, IEEE RSJ INT C INT R
[6]  
Fu Yang, 2022, ARXIV220615436
[7]   kPAM 2.0: Feedback Control for Category-Level Robotic Manipulation [J].
Gao, Wei ;
Tedrake, Russ .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :2962-2969
[8]  
Hartley R., 2004, Multiple View Geometry in Computer Vision, VSecond, DOI [10.1017/CBO9780511811685, DOI 10.1017/CBO9780511811685]
[9]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778