Quantifying Efficiency of Remote Excitation for Surface-Enhanced Raman Spectroscopy in Molecular Junctions

被引:3
作者
Liao, Shusen [1 ,2 ]
Zhu, Yunxuan [2 ]
Ye, Qian [2 ]
Sanders, Stephen [3 ]
Yang, Jiawei [2 ]
Alabastri, Alessandro [3 ]
Natelson, Douglas [2 ,3 ,4 ]
机构
[1] Rice Univ, Smalley Curl Inst, Appl Phys Grad Program, Houston, TX 77005 USA
[2] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[3] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
关键词
AU NANOWIRES; SCATTERING; SERS; 1,4-BENZENEDITHIOL; SPECTRA; GOLD;
D O I
10.1021/acs.jpclett.3c01948
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhancedRaman spectroscopy (SERS) is enabled by localsurface plasmon resonances (LSPRs) in metallic nanogaps. When SERSis excited by direct illumination of the nanogap, the background heatingof the lattice and electrons can prevent further manipulation of themolecules. To overcome this issue, we report SERS in electromigratedgold molecular junctions excited remotely: surface plasmon polaritons(SPPs) are excited at nearby gratings, propagate to the junction,and couple to the local nanogap plasmon modes. Like direct excitation,remote excitation of the nanogap can generate both SERS emission andan open-circuit photovoltage (OCPV). We compare the SERS intensityand the OCPV in both direct and remote illumination configurations.SERS spectra obtained by remote excitation are much more stable thanthose obtained through direct excitation when the photon count ratesare comparable. By statistical analysis of 33 devices, the couplingefficiency of remote excitation is calculated to be around 10%, consistentwith the simulated energy flow.
引用
收藏
页码:7574 / 7580
页数:7
相关论文
共 54 条
[1]  
[Anonymous], 2007, Plasmonics: Fundamentals and Applications
[2]   Lateral and Temporal Dependence of the Transport through an Atomic Gold Contact under Light Irradiation: Signature of Propagating Surface Plasmon Polaritons [J].
Benner, Daniel ;
Boneberg, Johannes ;
Nuernberger, Philipp ;
Waitz, Reimar ;
Leiderer, Paul ;
Scheer, Elke .
NANO LETTERS, 2014, 14 (09) :5218-5223
[3]   Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules [J].
Blackie, Evan J. ;
Le Ru, Eric C. ;
Etchegoin, Pablo G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (40) :14466-14472
[4]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]
[5]   RAMAN-SPECTROSCOPIC STUDY OF 1,4-BENZENEDITHIOL ADSORBED ON SILVER [J].
CHO, SH ;
HAN, HS ;
JANG, DJ ;
KIM, K ;
KIM, MS .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (26) :10594-10599
[6]   RESONANCE RAMAN-SPECTROSCOPY, AND ITS APPLICATION TO INORGANIC-CHEMISTRY [J].
CLARK, RJH ;
DINES, TJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1986, 25 (02) :131-158
[7]   APPLICATION OF SURFACE-ENHANCED RAMAN-SPECTROSCOPY TO BIOLOGICAL-SYSTEMS [J].
COTTON, TM ;
KIM, JH ;
CHUMANOV, GD .
JOURNAL OF RAMAN SPECTROSCOPY, 1991, 22 (12) :729-742
[8]   Raman spectroscopy: Recent advancements, techniques and applications [J].
Das, Ruchita S. ;
Agrawal, Y. K. .
VIBRATIONAL SPECTROSCOPY, 2011, 57 (02) :163-176
[9]   A frequency domain existence proof of single-molecule surface-enhanced Raman Spectroscopy [J].
Dieringer, Jon A. ;
Lettan, Robert B., II ;
Scheidt, Karl A. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (51) :16249-16256
[10]   Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential [J].
Efremov, Eutim V. ;
Ariese, Freek ;
Gooijer, Cees .
ANALYTICA CHIMICA ACTA, 2008, 606 (02) :119-134