Underestimated microbial infection of resorbable membranes on guided regeneration

被引:24
作者
Abdo, Victoria L. [1 ]
Suarez, Lina J. [1 ,2 ]
de Paula, Lucca Gomes [3 ]
Costa, Raphael C. [4 ]
Shibli, Jamil [1 ]
Feres, Magda [1 ,5 ]
Bara, Valentim A. R. [4 ]
Bertolini, Martinna [6 ]
Souza, Joao Gabriel Silva [1 ,3 ]
机构
[1] Univ Guarulhos, Dept Periodontol, Dent Res Div, Praca Tereza Cristina 88 Ctr, BR-07023070 Guarulhos, SP, Brazil
[2] Univ Nacl Colombia, Dept Ciencias Basicas & Med Oral, Cra 45 26-85, Bogota 11001, Colombia
[3] Fac Ciencias Odontol FCO, Dent Sci Sch, Av Waldomiro Marcondes Oliveira 20 Ibituruna, BR-39401303 Montes Claros, MG, Brazil
[4] Univ Estadual Campinas, Piracicaba Dent Sch, Dept Prosthodont & Periodontol, UNICAMP, Av Limeira 901, BR-13414903 Piracicaba, SP, Brazil
[5] Harvard Sch Dent Med, Boston, MA USA
[6] Univ Pittsburgh, Dept Periodont & Prevent Dent, Sch Dent Med, 3501 Terrace St, Pittsburgh, PA 15213 USA
基金
巴西圣保罗研究基金会;
关键词
Membranes; Guided tissue regeneration; Guided bone regeneration; Biofilms; Bacteria; Antimicrobial properties; PERIODONTAL TISSUE REGENERATION; BIOABSORBABLE BARRIER MATERIAL; RANDOMIZED CONTROLLED-TRIAL; CONTROLLED CLINICAL-TRIAL; LINKED COLLAGEN MEMBRANE; DEHISCENCE-TYPE DEFECTS; BONE REGENERATION; BACTERIAL-COLONIZATION; INTRABONY DEFECTS; NONRESORBABLE MEMBRANES;
D O I
10.1016/j.colsurfb.2023.113318
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Barrier membranes are critical in creating tissuecompartmentalization for guided tissue (GTR) and bone regeneration (GBR) therapies. More recently, resorbable membranes have been widely used for tissue and bone regeneration due to their improved properties and the dispensable re-entry surgery for membrane removal. However, in cases with membrane exposure, this may lead to microbial contamination that will compromise the integrity of the membrane, surrounding tissue, and bone regeneration, resulting in treatment failure. Although the microbial infection can negatively influence the clinical outcomes of regenerative therapy, such as GBR and GTR, there is a lack of clinical investigations in this field, especially concerning the microbial colonization of different types of membranes. Importantly, a deeper understanding of the mechanisms of biofilm growth and composition and pathogenesis on exposed membranes is still missing, explaining the mechanisms by which bone regeneration is reduced during membrane exposure. This scoping review comprehensively screened and discussed the current in vivo evidence and possible new perspectives on the microbial contamination of resorbable membranes. Results from eligible in vivo studies suggested that different bacterial species colonized exposed membranes according to their composition (collagen, expanded polytetrafluoroethylene (non-resorbable), and polylactic acid), but in all cases, it negatively affected the attachment level and amount of bone gain. However, limited models and techniques have evaluated the newly developed materials, and evidence is scarce. Finally, new approaches to enhance the antimicrobial effect should consider changing the membrane surface or incorporating long-term released antimicrobials in an effort to achieve better clinical success.
引用
收藏
页数:16
相关论文
共 173 条
[21]   Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers [J].
Carpio, L ;
Loza, J ;
Lynch, S ;
Genco, R .
JOURNAL OF PERIODONTOLOGY, 2000, 71 (11) :1743-1749
[22]   Evaluation of the regenerative effect of a 25% doxycycline-loaded biodegradable membrane for guided tissue regeneration [J].
Chang, CY ;
Yamada, S .
JOURNAL OF PERIODONTOLOGY, 2000, 71 (07) :1086-1093
[23]   Lymphocyte/macrophage interactions: Biomaterial surface-dependent cytokine, chemokine, and matrix protein production [J].
Chang, David T. ;
Jones, Jacqueline A. ;
Meyerson, Howard ;
Colton, Erica ;
Kwon, Il Keun ;
Matsuda, Takehisa ;
Anderson, James M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2008, 87A (03) :676-687
[24]   Attachment of periodontal ligament cells to chlorhexidine-loaded guided tissue regeneration membranes [J].
Chen, YT ;
Hung, SL ;
Lin, LW ;
Chi, LY ;
Ling, LJ .
JOURNAL OF PERIODONTOLOGY, 2003, 74 (11) :1652-1659
[25]   Bacterial adherence to guided tissue regeneration barrier membranes exposed to the oral environment [J].
Chen, YT ;
Wang, HL ;
Lopatin, DE ;
ONeal, R ;
MacNeil, RL .
JOURNAL OF PERIODONTOLOGY, 1997, 68 (02) :172-179
[26]   Polycaprolactone Electrospun Nanofiber Membrane with Sustained Chlorohexidine Release Capability against Oral Pathogens [J].
Chen, Zi-Jian ;
Lv, Jia-Cheng ;
Wang, Zhi-Guo ;
Wang, Fei-Yu ;
Huang, Ren-Huan ;
Zheng, Zi-Li ;
Xu, Jia-Zhuang ;
Wang, Jing .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2022, 13 (04)
[27]   Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes - A scanning electron microscopy study [J].
Cheng, Chi-Fang ;
Wu, Kai-Ming ;
Chen, Yen-Ting ;
Hung, Shan-Ling .
JOURNAL OF THE FORMOSAN MEDICAL ASSOCIATION, 2015, 114 (01) :35-45
[28]   In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration [J].
Chor, Ana ;
Goncalves, Raquel Pires ;
Costa, Andrea Machado ;
Farina, Marcos ;
Ponche, Arnaud ;
Sirelli, Lys ;
Schrodj, Gautier ;
Gree, Simon ;
de Andrade, Leonardo Rodrigues ;
Anselme, Karine ;
Dias, Marcos Lopes .
POLYMERS, 2020, 12 (08)
[29]  
Chu CY, 2017, TISSUE ENG PART B-RE, V23, P421, DOI [10.1089/ten.teb.2016.0463, 10.1089/ten.TEB.2016.0463]
[30]   Tailoring Cu2+-loaded electrospun membranes with antibacterial ability for guided bone regeneration [J].
Cordeiro, Jairo M. ;
Barao, Valentim A. R. ;
de Avila, Erica D. ;
Husch, Johanna F. A. ;
Yang, Fang ;
van den Beucken, Jeroen J. J. P. .
BIOMATERIALS ADVANCES, 2022, 139