Physics-informed neural networks for solving nonlinear Bloch equations in atomic magnetometry

被引:3
作者
Lei, Gaoyi [1 ,2 ]
Ma, Ning [1 ,2 ]
Sun, Bowen [1 ,2 ]
Mao, Kun [1 ,2 ]
Chen, Baodong [1 ,2 ]
Zhai, Yueyang [1 ,2 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Key Lab Ultraweak Magnet Field Measurement Techno, Minist Educ, Beijing, Peoples R China
[2] Beihang Univ, Hangzhou Innovat Inst, Zhejiang Prov Key Lab Ultra Weak Magnet Field Spa, People's Republ China, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Bloch equation; atomic magnetometer; physics-informed neural networks; spin distribution; IMPROVEMENT;
D O I
10.1088/1402-4896/ace290
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we address the challenge of analyzing spatial spin distribution based on the nonlinear Bloch equations in atomic magnetometry through the use of physics-informed neural networks (PINNs). Atomic magnetometry plays a crucial role in the field of biomagnetism, where it is used to detect weak magnetic fields produced by the human brain, heart, and other organs. The Bloch equations describe the spin polarization of atomic clusters in an external magnetic field, but their nonlinearity can make the analysis of the spin distribution in spatial domain difficult. By utilizing PINNs, we provide a numerical solution to the nonlinear Bloch equations, examining the effect of different pump light schemes and wall collisions. Additionally, we propose a easily executed system identification method for the Bloch equations through the use of PINNs in a data-driven discovery mode, expanding the design space of atomic magnetometry beyond traditional simulation methods.
引用
收藏
页数:10
相关论文
共 44 条
  • [1] High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation
    Allred, JC
    Lyman, RN
    Kornack, TW
    Romalis, MV
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (13) : 130801 - 130801
  • [2] [Anonymous], 1958, Bull. Am. Phys. Soc.
  • [3] High quality anti-relaxation coating material for alkali atom vapor cells
    Balabas, M. V.
    Jensen, K.
    Wasilewski, W.
    Krauter, H.
    Madsen, L. S.
    Muller, J. H.
    Fernholz, T.
    Polzik, E. S.
    [J]. OPTICS EXPRESS, 2010, 18 (06): : 5825 - 5830
  • [4] On the application of physics informed neural networks (PINN) to solve boundary layer thermal-fluid problems
    Bararnia, Hassan
    Esmaeilpour, Mehdi
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 132
  • [5] Optical magnetometry
    Budker, Dmitry
    Romalis, Michael
    [J]. NATURE PHYSICS, 2007, 3 (04) : 227 - 234
  • [6] Physics-informed neural networks (PINNs) for fluid mechanics: a review
    Cai, Shengze
    Mao, Zhiping
    Wang, Zhicheng
    Yin, Minglang
    Karniadakis, George Em
    [J]. ACTA MECHANICA SINICA, 2021, 37 (12) : 1727 - 1738
  • [7] Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
    Casola, Francesco
    van der Sar, Toeno
    Yacoby, Amir
    [J]. NATURE REVIEWS MATERIALS, 2018, 3 (01):
  • [8] In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer
    Fang, Jiancheng
    Qin, Jie
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
  • [9] Comparison of Gaussian and super Gaussian laser beams for addressing atomic qubits
    Gillen-Christandl, Katharina
    Gillen, Glen D.
    Piotrowicz, M. J.
    Saffman, M.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (05):
  • [10] Holland J. R., 2019, AIAA Paper 2019-1884, P1884, DOI DOI 10.2514/6.2019-1884