SARS-CoV-2 Inactivation in Aerosol by Means of Radiated Microwaves

被引:8
作者
Manna, Antonio [1 ]
De Forni, Davide [2 ]
Bartocci, Marco [1 ]
Pasculli, Nicola [1 ]
Poddesu, Barbara [2 ]
Lista, Florigio [3 ]
De Santis, Riccardo [3 ]
Amatore, Donatella [3 ]
Grilli, Giorgia [3 ]
Molinari, Filippo [3 ]
Vincentelli, Alberto Sangiovanni [1 ,4 ]
Lori, Franco [2 ]
机构
[1] Elettronica SpA, Via Tiburtina Valeria,Km 13-700, I-00131 Rome, Italy
[2] ViroStat Srl, Viale Umberto I 46, I-07100 Sassari, Italy
[3] Def Inst Biomed Sci, I-00184 Rome, Italy
[4] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
来源
VIRUSES-BASEL | 2023年 / 15卷 / 07期
关键词
SARS-CoV-2; SRET; COVID-19; airborne pathogens; air transmission; microwave inactivation; AIRBORNE TRANSMISSION; DROPLETS; SPEED;
D O I
10.3390/v15071443
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Coronaviruses are a family of viruses that cause disease in mammals and birds. In humans, coronaviruses cause infections on the respiratory tract that can be fatal. These viruses can cause both mild illnesses such as the common cold and lethal illnesses such as SARS, MERS, and COVID-19. Air transmission represents the principal mode by which people become infected by SARS-CoV-2. To reduce the risks of air transmission of this powerful pathogen, we devised a method of inactivation based on the propagation of electromagnetic waves in the area to be sanitized. We optimized the conditions in a controlled laboratory environment mimicking a natural airborne virus transmission and consistently achieved a 90% (tenfold) reduction of infectivity after a short treatment using a Radio Frequency (RF) wave emission with a power level that is safe for people according to most regulatory agencies, including those in Europe, USA, and Japan. To the best of our knowledge, this is the first time that SARS-CoV-2 has been shown to be inactivated through RF wave emission under conditions compatible with the presence of human beings and animals. Additional in-depth studies are warranted to extend the results to other viruses and to explore the potential implementation of this technology in different environmental conditions.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Harnessing Antiviral Peptides as Means for SARS-CoV-2 Control [J].
Zarkesh, Khatereh ;
Akbarian, Mohsen ;
Tayebi, Lobat ;
Uversky, Vladimir N. ;
Rubio-Casillas, Alberto ;
Redwan, Elrashdy M. .
COVID, 2023, 3 (07) :975-986
[32]   SARS-CoV-2 surveillance in indoor and outdoor size-segregated aerosol samples [J].
del Real, Alvaro ;
Exposito, Andrea ;
Ruiz-Azcona, Laura ;
Santibanez, Miguel ;
Fernandez-Olmo, Ignacio .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (42) :62973-62983
[33]   The Impact of Large Mobile Air Purifiers on Aerosol Concentration in Classrooms and the Reduction of Airborne Transmission of SARS-CoV-2 [J].
Duill, Finn F. ;
Schulz, Florian ;
Jain, Aman ;
Krieger, Leve ;
van Wachem, Berend ;
Beyrau, Frank .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (21)
[34]   Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors [J].
Vuorinen, Ville ;
Aarnio, Mia ;
Alava, Mikko ;
Alopaeus, Ville ;
Atanasova, Nina ;
Auvinen, Mikko ;
Balasubramanian, Nallannan ;
Bordbar, Hadi ;
Erasto, Panu ;
Grande, Rafael ;
Hayward, Nick ;
Hellsten, Antti ;
Hostikka, Simo ;
Hokkanen, Jyrki ;
Kaario, Ossi ;
Karvinen, Aku ;
Kivisto, Ilkka ;
Korhonen, Marko ;
Kosonen, Risto ;
Kuusela, Janne ;
Lestinen, Sami ;
Laurila, Erkki ;
Nieminen, Heikki J. ;
Peltonen, Petteri ;
Pokki, Juho ;
Puisto, Antti ;
Raback, Peter ;
Salmenjoki, Henri ;
Sironen, Tarja ;
Osterberg, Monika .
SAFETY SCIENCE, 2020, 130 (130)
[35]   Effective in vitro inactivation of SARS-CoV-2 by commercially available mouthwashes [J].
Davies, Katherine ;
Buczkowski, Hubert ;
Welch, Stephen R. ;
Green, Nicole ;
Mawer, Damian ;
Woodford, Neil ;
Roberts, Allen D. G. ;
Nixon, Peter J. ;
Seymour, David W. ;
Killip, Marian J. .
JOURNAL OF GENERAL VIROLOGY, 2021, 102 (04)
[36]   Mechanisms of SARS-CoV-2 Inactivation Using UVC Laser Radiation [J].
Devitt, George ;
Johnson, Peter B. ;
Hanrahan, Niall ;
Lane, Simon I. R. ;
Vidale, Magdalena C. ;
Sheth, Bhavwanti ;
Allen, Joel D. ;
Humbert, Maria V. ;
Spalluto, Cosma M. ;
Herve, Rodolphe C. ;
Staples, Karl ;
West, Jonathan J. ;
Forster, Robert ;
Divecha, Nullin ;
McCormick, Christopher J. ;
Crispin, Max ;
Hempler, Nils ;
Malcolm, Graeme P. A. ;
Mahajan, Sumeet .
ACS PHOTONICS, 2023, 11 (01) :42-52
[37]   Comparison of the inactivation capacity of various UV wavelengths on SARS-CoV-2 [J].
Matsuura, Ryosuke ;
Lo, Chieh-Wen ;
Ogawa, Takayo ;
Nakagawa, Masaru ;
Takei, Masami ;
Matsumoto, Yasunobu ;
Wada, Satoshi ;
Aida, Yoko .
BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2022, 32
[38]   Instant inactivation of aerosolized SARS-CoV-2 by dielectric filter discharge [J].
Baek, Ki Ho ;
Jang, Donghwan ;
Kim, Taeyoon ;
Park, Joo Young ;
Kim, Dojoon ;
Ryoo, Sungweon ;
Lee, Seunghun .
PLOS ONE, 2022, 17 (05)
[39]   Highly Effective Inactivation of SARS-CoV-2 by Conjugated Polymers and Oligomers [J].
Monge, Florencia A. ;
Jagadesan, Pradeepkumar ;
Bondu, Virginie ;
Donabedian, Patrick L. ;
Ista, Linnea ;
Chi, Eva Y. ;
Schanze, Kirk S. ;
Whitten, David G. ;
Kell, Alison M. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) :55688-55695
[40]   Research Progress and Implication on Photocatalytic Inactivation of SARS-CoV-2 by Nanomaterials [J].
Chen L. ;
Liu Z. ;
Yang X. ;
Zhang R. ;
Sun W. ;
Liu W. .
Cailiao Daobao/Materials Reports, 2022, 36 (20)