On g-frame representations via linear operators

被引:0
作者
Jahedi, S. [1 ]
Javadi, F. [1 ]
Mehdipour, M. J. [1 ]
机构
[1] Shiraz Univ Technol, Dept Math, POB 71555-313, Shiraz, Iran
关键词
g-Frame; Linear operator; Perturbation; Stability; FUSION FRAMES;
D O I
10.1007/s11868-023-00546-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {Mk}k?Z be a sequence of closed subspaces of Hilbert space H, and let {Tk}k?Z be a sequence of linear operators from H into Mk, k ? Z. In the case where, Tk is selfadjoint andTk(Mk) = Mk for all k ? Z, we show that if a g-frame {(Mk, Tk)}k?Z is represented via a linear operator T on span{Mk}k?Z, then T is bounded; moreover, if {(Mk, Tk)}k?Z is a tight g- frame, then T is not invertible. We also study the perturbation and the stability of these g-frames. Finally, we give some examples to show the validity of the results. A preliminary version of this manuscript was submitted to https://arxiv.org/abs/2305.08182 This version is a reedited copy of it.
引用
收藏
页数:12
相关论文
共 16 条
  • [1] Casazza P., 2005, J MATH ANAL APPL, V38, P541
  • [2] Fusion frames and distributed processing
    Casazza, Peter G.
    Kutyniok, Gitta
    Li, Shidong
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (01) : 114 - 132
  • [3] Christensen O., 2016, INTRO FRAMES RIESZ B, DOI 10.1007/978-0-8176-8224-8
  • [4] Frame properties of systems arising via iterated actions of operators
    Christensen, Ole
    Hasannasab, Marzieh
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 46 (03) : 664 - 673
  • [5] Dynamical sampling and frame representations with bounded operators
    Christensen, Ole
    Hasannasab, Marzieh
    Rashidi, Ehsan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 634 - 644
  • [6] Operator Representations of Frames: Boundedness, Duality, and Stability
    Christensen, Ole
    Hasannasab, Marzieh
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (04) : 483 - 499
  • [7] On the duality of fusion frames
    Gavruta, P.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) : 871 - 879
  • [8] OPERATOR REPRESENTATIONS OF K-FRAMES: BOUNDEDNESS AND STABILITY
    He, Miao
    Leng, Jinsong
    Li, Dongwei
    Xu, Yuxiang
    [J]. OPERATORS AND MATRICES, 2020, 14 (04): : 921 - 934
  • [9] Hewitt E., 1979, ABSTRACT HARMONIC AN, V1
  • [10] On Constructions of K-g-Frames in Hilbert Spaces
    Javadi, F.
    Mehdipour, M. J.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)